Large-area, robust, transparent, and conductive ultrathin polymer nanocomposite membranes for flexible electronics

被引:0
|
作者
Gu, Sheng
Wang, Dong [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer nanocomposite membranes; Liquid-liquid interfaces; Self-assembly; Nanoparticle surfactants; Atomic force microscopy; CARBON NANOTUBES; THIN-FILMS; NANOPARTICLE; COMPOSITES; NANOSHEETS; BEHAVIOR;
D O I
10.1016/j.jcis.2025.02.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrathin polymer nanocomposite membranes exhibit exceptional mechanical, electrical, and optical properties, making them increasingly important for flexible electronics and sensor devices. Here, we employ interfacial formation, assembly, and jamming of nanoparticle surfactants at liquid/liquid interfaces to fabricate large-area, robust, transparent, conductive, and freestanding ultrathin polymer nanocomposite membranes. Polystyrene (PS) dissolves in toluene and cellulose nanocrystal (CNC)-carbon nanotube (CNT) dispersed in water interact via electrostatic interactions and hydrogen bonding to form CNC-CNT surfactants rapidly at the oil/water interface. These surfactants assemble and jam to generate PS/CNC-CNT ultrathin nanocomposite membranes with exceptional mechanical properties. The freestanding membranes feature diameters up to 0.5 mm and are strong enough to support liquid masses at least 1000 times their own weight. We demonstrate that these ultrathin nanocomposite membranes exhibit tunable mechanical, electrical, and optical properties by simply varying the contents of PS and CNC-CNT, as well as the pH of the CNC-CNT aqueous dispersion, highlighting their great potential for applications in flexible electronics.
引用
收藏
页码:941 / 950
页数:10
相关论文
共 50 条
  • [42] Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses
    Park, Jin-Woo
    Lee, Seung-Ho
    Yang, Chan-Woo
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (06)
  • [43] Stretchable, Large-area Organic Electronics
    Sekitani, Tsuyoshi
    Someya, Takao
    ADVANCED MATERIALS, 2010, 22 (20) : 2228 - 2246
  • [44] Innovative Manufacturing of Large-Area Electronics
    Occhipinti, Luigi G.
    PROCEEDINGS OF THE 2014 44TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2014), 2014, : 194 - 197
  • [45] Laser crystallization for large-area electronics
    Sameshima, Toshiyuki
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (01): : 137 - 144
  • [46] Radiation-Tolerant Flexible Large-Area Electronics Based on Oxide Semiconductors
    Cramer, Tobias
    Sacchetti, Allegra
    Lobato, Maria Teresa
    Barquinha, Pedro
    Fischer, Vincent
    Benwadih, Mohamed
    Bablet, Jacqueline
    Fortunato, Elvira
    Martins, Rodrigo
    Fraboni, Beatrice
    ADVANCED ELECTRONIC MATERIALS, 2016, 2 (07):
  • [47] Facile Preparation of Large-Area, Ultrathin, Flexible Semi-Transparent Perovskite Solar Cells via Spin-Coating
    Przypis, Lukasz
    Zuraw, Wiktor
    Grodzicki, Milosz
    Scigaj, Mateusz
    Kudrawiec, Robert
    Herman, Artur P.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (11): : 4803 - 4812
  • [48] Large-area, flexible macroelectronics
    Reuss, R
    2002 IEEE/LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 357 - 358
  • [49] Transparent, Optical, Pressure-Sensitive Artificial Skin for Large-Area Stretchable Electronics
    Ramuz, Marc
    Tee, Benjamin C-K.
    Tok, Jeffrey B. -H.
    Bao, Zhenan
    ADVANCED MATERIALS, 2012, 24 (24) : 3223 - 3227
  • [50] Facile fabrication of large-area BN films for thermal management in flexible electronics
    Gao, Shan
    Bai, Xue
    Li, Junhong
    Han, Mang
    Yao, Yimin
    Zeng, Xiaoliang
    Sun, Rong
    Zhang, Ping
    COMPOSITES COMMUNICATIONS, 2022, 36