Radiation-Tolerant Flexible Large-Area Electronics Based on Oxide Semiconductors

被引:41
|
作者
Cramer, Tobias [1 ]
Sacchetti, Allegra [1 ]
Lobato, Maria Teresa [2 ,3 ]
Barquinha, Pedro [2 ,3 ]
Fischer, Vincent [4 ]
Benwadih, Mohamed [4 ]
Bablet, Jacqueline [4 ]
Fortunato, Elvira [2 ,3 ]
Martins, Rodrigo [2 ,3 ]
Fraboni, Beatrice [1 ]
机构
[1] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
[2] Univ Nova Lisboa, Fac Sci & Technol, Dept Mat Sci, CENIMAT i3N, Campus Caparica, P-2829516 Caparica, Portugal
[3] CEMOP UNINOVA, Campus Caparica, P-2829516 Caparica, Portugal
[4] CEA Grenoble, LITEN, 17 Rue Martyrs, F-38054 Grenoble, France
来源
ADVANCED ELECTRONIC MATERIALS | 2016年 / 2卷 / 07期
关键词
THIN-FILM TRANSISTORS; LIGHT-EMITTING-DIODES; MOS OXIDES; DEVICES; DAMAGE; IRRADIATION; FABRICATION; TECHNOLOGY; DESIGN;
D O I
10.1002/aelm.201500489
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Large-area electronics for applications in environments with radioactive contamination or medical X-ray detectors require materials and devices resistant to continuous ionizing radiation exposure. Here the superior X-ray radiation hardness of oxide thin film transistors (TFTs) based on gallium-indium-zinc oxide is demonstrated, when compared to organic ones. In the experiments both TFTs are subjected to X-ray radiation and their performances are monitored as a function of total ionizing dose. Flexible oxide TFTs maintain a constant mobility of 10 cm(2) V-1 s(-1) even after exposure to doses of 410 krad(SiO2), whereas organic TFTs lose 55% of their transport performance. The exceptional resistance of oxide semiconductors ionization damage is attributed to their intrinsic properties such as independence of transport on long-range order and large heat of formation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Radiation-Tolerant Electronics
    Leroux, Paul
    [J]. ELECTRONICS, 2022, 11 (19)
  • [2] Carbon Nanotubes for Radiation-Tolerant Electronics
    Kanhaiya, Pritpal S.
    Yu, Andrew
    Netzer, Richard
    Kemp, William
    Doyle, Derek
    Shulaker, Max M.
    [J]. ACS NANO, 2021, 15 (11) : 17310 - 17318
  • [3] Large-Area Flexible Electronics with Organic Transistors
    Ishida, Koichi
    Huang, Tsung-Ching
    Sekitani, Tsuyoshi
    Takamiya, Makoto
    Someya, Takao
    Sakurai, Takayasu
    [J]. 2011 IEEE 54TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2011,
  • [4] Flexible Electronics Based on Oxide Semiconductors
    Petti, Luisa
    Muenzenrieder, Niko
    Salvatore, Giovanni Antonio
    Zysset, Christoph
    Kinkeldei, Thomas
    Buethe, Lars
    Vogt, Christian
    Troester, Gerhard
    [J]. 2014 21ST INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2014, : 323 - 326
  • [5] Digital lithography for large-area electronics on flexible substrates
    Wong, William S.
    Lujan, Rene
    Daniel, Jurgen H.
    Limb, Scott
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1981 - 1985
  • [6] Large-Area MXene Electrode Array for Flexible Electronics
    Lyu, Benzheng
    Kim, Minje
    Jing, Hongyue
    Kang, Joohoon
    Qian, Chuan
    Lee, Sungjoo
    Cho, Jeong Ho
    [J]. ACS NANO, 2019, 13 (10) : 11392 - 11400
  • [7] Flexible transparent electrodes for large-area printed electronics
    [J]. 1600, International Display Workshops (01):
  • [8] Gravure Printing of Graphene for Large-Area Flexible Electronics
    Secor, Ethan B.
    Lim, Sooman
    Zhang, Heng
    Frisbie, C. Daniel
    Francis, Lorraine F.
    Hersam, Mark C.
    [J]. ADVANCED MATERIALS, 2014, 26 (26) : 4533 - +
  • [9] RADIATION-TOLERANT ELECTRONICS TESTING OF A PROTOTYPE ISOLATING PREAMPLIFIER
    MILLARD, J
    [J]. FUSION ENGINEERING AND DESIGN, 1995, 29 : 330 - 333
  • [10] Flexible Fabrication of Flexible Electronics: A General Laser Ablation Strategy for Robust Large-Area Copper-Based Electronics
    Qin, Ruzhan
    Hu, Mingjun
    Zhang, Naibai
    Guo, Zhongyue
    Yan, Ze
    Li, Jiebo
    Liu, Jinzhang
    Shan, Guangcun
    Yang, Jun
    [J]. ADVANCED ELECTRONIC MATERIALS, 2019, 5 (10):