Large-area, robust, transparent, and conductive ultrathin polymer nanocomposite membranes for flexible electronics

被引:0
|
作者
Gu, Sheng
Wang, Dong [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer nanocomposite membranes; Liquid-liquid interfaces; Self-assembly; Nanoparticle surfactants; Atomic force microscopy; CARBON NANOTUBES; THIN-FILMS; NANOPARTICLE; COMPOSITES; NANOSHEETS; BEHAVIOR;
D O I
10.1016/j.jcis.2025.02.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrathin polymer nanocomposite membranes exhibit exceptional mechanical, electrical, and optical properties, making them increasingly important for flexible electronics and sensor devices. Here, we employ interfacial formation, assembly, and jamming of nanoparticle surfactants at liquid/liquid interfaces to fabricate large-area, robust, transparent, conductive, and freestanding ultrathin polymer nanocomposite membranes. Polystyrene (PS) dissolves in toluene and cellulose nanocrystal (CNC)-carbon nanotube (CNT) dispersed in water interact via electrostatic interactions and hydrogen bonding to form CNC-CNT surfactants rapidly at the oil/water interface. These surfactants assemble and jam to generate PS/CNC-CNT ultrathin nanocomposite membranes with exceptional mechanical properties. The freestanding membranes feature diameters up to 0.5 mm and are strong enough to support liquid masses at least 1000 times their own weight. We demonstrate that these ultrathin nanocomposite membranes exhibit tunable mechanical, electrical, and optical properties by simply varying the contents of PS and CNC-CNT, as well as the pH of the CNC-CNT aqueous dispersion, highlighting their great potential for applications in flexible electronics.
引用
收藏
页码:941 / 950
页数:10
相关论文
共 50 条
  • [31] Performance enhancement of large-area graphene-polymer flexible transparent conductive films fabricated by ultrasonic substrate vibration-assisted rod coating
    Li, Zhe
    Zhang, Xinyu
    Shen, Long
    Fan, Zhijun
    Chen, Xuewen
    Chen, Min
    Qiu, Shaohua
    Zabihi, Fatemeh
    Eslamian, Morteza
    Chen, Qianli
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2019, 16 (06) : 1773 - 1780
  • [32] Metal grid technologies for flexible transparent conductors in large-area optoelectronics
    Fakharan, Zahra
    Dabirian, Ali
    CURRENT APPLIED PHYSICS, 2021, 31 : 105 - 121
  • [33] LARGE-AREA GRAPHENE-BASED FLEXIBLE TRANSPARENT CONDUCTING FILMS
    Guenes, Fethullah
    Han, Gang Hee
    Kim, Ki Kang
    Kim, Eun Sung
    Chae, Seung Jin
    Park, Min Ho
    Jeong, Hae-Kyung
    Lim, Seong Chu
    Lee, Young Hee
    NANO, 2009, 4 (02) : 83 - 90
  • [34] Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films
    Zhao, Jinping
    Pei, Songfeng
    Ren, Wencai
    Gao, Libo
    Cheng, Hui-Ming
    ACS NANO, 2010, 4 (09) : 5245 - 5252
  • [35] Fabrication of Large-area Free-standing Ultrathin Polymer Films
    Stadermann, Michael
    Baxamusa, Salmaan H.
    Aracne-Ruddle, Chantel
    Chea, Maverick
    Li, Shuaili
    Youngblood, Kelly
    Suratwala, Tayyab
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (100):
  • [36] Large-area rod-coated indium-tin-oxide transparent conductive films for low-cost electronics
    Li, Hangyu
    Ruan, Cheng
    Sun, Qiang
    Rui, Minghong
    Wang, Sumei
    Xia, Guodong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (34)
  • [37] Large-Area, Semitransparent, and Flexible All-Polymer Photodetectors
    Xu, Xiaofeng
    Zhou, Xiaobo
    Zhou, Ke
    Xia, Yuxin
    Ma, Wei
    Inganas, Olle
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (48)
  • [38] Efficient large-area polymer solar cells on flexible substrates
    Al-Ibrahim, M
    Roth, HK
    Sensfuss, S
    APPLIED PHYSICS LETTERS, 2004, 85 (09) : 1481 - 1483
  • [39] Magnetoelectric polymer nanocomposite for flexible electronics
    Alnassar, M.
    Alfadhel, A.
    Ivanov, Yu P.
    Kosel, J.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [40] Laser crystallization for large-area electronics
    Toshiyuki Sameshima
    Applied Physics A, 2009, 96 : 137 - 144