A comprehensive human embryo reference tool using single-cell RNA-sequencing data

被引:9
|
作者
Zhao, Cheng [1 ,2 ]
Reyes, Alvaro Plaza [1 ,2 ,3 ]
Schell, John Paul [1 ,2 ]
Weltner, Jere [1 ,2 ,4 ,5 ]
Ortega, Nicolas M. [1 ,2 ]
Zheng, Yi [6 ,7 ]
Bjorklund, Asa K. [8 ]
Baque-vidal, Laura [1 ,2 ]
Sokka, Joonas [4 ]
Torokovic, Ras [4 ]
Cox, Brian [9 ]
Rossant, Janet [10 ]
Fu, Jianping [6 ,11 ]
Petropoulos, Sophie [1 ,2 ,12 ,13 ]
Lanner, Fredrik [1 ,2 ,14 ]
机构
[1] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Obstet & Gynecol, Stockholm, Sweden
[2] Karolinska Univ sjukhuset, Div Obstet & Gynecol, Stockholm, Sweden
[3] Andalusian Mol Biol & Regenerat Med Ctr CABIMER, Dept Regenerat & Cell Therapy, Seville, Spain
[4] Univ Helsinki, Stem Cells & Metab Res Program, Helsinki, Finland
[5] Folkhalsan Res Ctr, Helsinki, Finland
[6] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48104 USA
[7] Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY USA
[8] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Natl Bioinformat Infrastruct Sweden, Uppsala, Sweden
[9] Univ Toronto, Fac Med, Dept Physiol, Toronto, ON, Canada
[10] Hosp Sick Children, Program Dev & Stem Cell Biol, Toronto, ON, Canada
[11] Univ Michigan, Dept Cell & Dev Biol, Med Sch, Ann Arbor, MI USA
[12] Univ Montreal, Dept Med, Montreal, PQ, Canada
[13] Ctr Rech Ctr Hosp Univ Montreal, Axe Immunopathol, Montreal, PQ, Canada
[14] Karolinska Inst, Ming Wai Lau Ctr Reparat Med, Stockholm Node, Stockholm, Sweden
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 瑞典研究理事会;
关键词
PLURIPOTENT STEM-CELLS; TROPHOBLAST; PREIMPLANTATION; DIFFERENTIATION; BLASTOCYST; REVEALS; RECONSTRUCTION; EXPRESSION; SIGNATURES; MODELS;
D O I
10.1038/s41592-024-02493-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication. This resource integrates different human embryo datasets to create a transcriptional reference map of human embryonic development from zygote to gastrula.
引用
收藏
页码:193 / 206
页数:35
相关论文
共 50 条
  • [41] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Yu Tian
    Ruiqing Zheng
    Zhenlan Liang
    Suning Li
    Fang-Xiang Wu
    Min Li
    TsinghuaScienceandTechnology, 2021, 26 (05) : 772 - 789
  • [42] Clustering single-cell rna-sequencing data based on matching clusters structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    Tehnicki Vjesnik, 2020, 27 (01): : 89 - 95
  • [43] Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references
    Pool, Allan-Hermann
    Poldsam, Helen
    Chen, Sisi
    Thomson, Matt
    Oka, Yuki
    NATURE METHODS, 2023, 20 (10) : 1506 - +
  • [44] scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
    Vy Nguyen
    Johannes Griss
    BMC Bioinformatics, 23
  • [45] Identifying and removing the cellcycle effect from single-cell RNA-Sequencing data
    Barron, Martin
    Li, Jun
    SCIENTIFIC REPORTS, 2016, 6
  • [46] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)
  • [47] scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
    Nguyen, Vy
    Griss, Johannes
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [48] Fast identification of differential distributions in single-cell RNA-sequencing data with waddR
    Schefzik, Roman
    Flesch, Julian
    Goncalves, Angela
    BIOINFORMATICS, 2021, 37 (19) : 3204 - 3211
  • [49] scruff: an R/Bioconductor package for preprocessing single-cell RNA-sequencing data
    Zhe Wang
    Junming Hu
    W. Evan Johnson
    Joshua D. Campbell
    BMC Bioinformatics, 20
  • [50] Multi-Target Integration and Annotation of Single-Cell RNA-Sequencing Data
    Bhandari, Sapan
    Whitener, Nathan P.
    Zhao, Konghao
    Khuri, Natalia
    13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,