A comprehensive human embryo reference tool using single-cell RNA-sequencing data

被引:9
|
作者
Zhao, Cheng [1 ,2 ]
Reyes, Alvaro Plaza [1 ,2 ,3 ]
Schell, John Paul [1 ,2 ]
Weltner, Jere [1 ,2 ,4 ,5 ]
Ortega, Nicolas M. [1 ,2 ]
Zheng, Yi [6 ,7 ]
Bjorklund, Asa K. [8 ]
Baque-vidal, Laura [1 ,2 ]
Sokka, Joonas [4 ]
Torokovic, Ras [4 ]
Cox, Brian [9 ]
Rossant, Janet [10 ]
Fu, Jianping [6 ,11 ]
Petropoulos, Sophie [1 ,2 ,12 ,13 ]
Lanner, Fredrik [1 ,2 ,14 ]
机构
[1] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Obstet & Gynecol, Stockholm, Sweden
[2] Karolinska Univ sjukhuset, Div Obstet & Gynecol, Stockholm, Sweden
[3] Andalusian Mol Biol & Regenerat Med Ctr CABIMER, Dept Regenerat & Cell Therapy, Seville, Spain
[4] Univ Helsinki, Stem Cells & Metab Res Program, Helsinki, Finland
[5] Folkhalsan Res Ctr, Helsinki, Finland
[6] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48104 USA
[7] Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY USA
[8] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Natl Bioinformat Infrastruct Sweden, Uppsala, Sweden
[9] Univ Toronto, Fac Med, Dept Physiol, Toronto, ON, Canada
[10] Hosp Sick Children, Program Dev & Stem Cell Biol, Toronto, ON, Canada
[11] Univ Michigan, Dept Cell & Dev Biol, Med Sch, Ann Arbor, MI USA
[12] Univ Montreal, Dept Med, Montreal, PQ, Canada
[13] Ctr Rech Ctr Hosp Univ Montreal, Axe Immunopathol, Montreal, PQ, Canada
[14] Karolinska Inst, Ming Wai Lau Ctr Reparat Med, Stockholm Node, Stockholm, Sweden
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 瑞典研究理事会;
关键词
PLURIPOTENT STEM-CELLS; TROPHOBLAST; PREIMPLANTATION; DIFFERENTIATION; BLASTOCYST; REVEALS; RECONSTRUCTION; EXPRESSION; SIGNATURES; MODELS;
D O I
10.1038/s41592-024-02493-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication. This resource integrates different human embryo datasets to create a transcriptional reference map of human embryonic development from zygote to gastrula.
引用
收藏
页码:193 / 206
页数:35
相关论文
共 50 条
  • [21] Missing data and technical variability in single-cell RNA-sequencing experiments
    Hicks, Stephanie C.
    Townes, F. William
    Teng, Mingxiang
    Irizarry, Rafael A.
    BIOSTATISTICS, 2018, 19 (04) : 562 - 578
  • [22] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Tracy, Sam
    Yuan, Guo-Cheng
    Dries, Ruben
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [23] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Sam Tracy
    Guo-Cheng Yuan
    Ruben Dries
    BMC Bioinformatics, 20
  • [24] DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data
    DePasquale, Erica A. K.
    Schnell, Daniel J.
    Van Camp, Pieter-Jan
    Valiente-Alandi, Inigo
    Blaxall, Burns C.
    Grimes, H. Leighton
    Singh, Harinder
    Salomonis, Nathan
    CELL REPORTS, 2019, 29 (06): : 1718 - +
  • [25] Dissecting immune cell heterogeneity in human cancer by single-cell RNA-sequencing
    Yofe, Ido
    Li, Hanjie
    van der Leun, Anne
    Yaniv, Lubling
    Weiner, Assaf
    van Akkooi, Alexander
    Tanay, Amos
    Schumacher, Ton
    Amit, Ido
    CANCER IMMUNOLOGY RESEARCH, 2018, 6 (09)
  • [26] Single-cell RNA-sequencing of human eosinophils in allergic inflammation in the esophagus
    Morgenstern, Netali Ben-Baruch
    Rochman, Mark
    Kotliar, Michael
    Dunn, Julia L. M.
    Mack, Lydia
    Besse, John
    Natale, Mia A.
    Klingler, Andrea M.
    Felton, Jennifer M.
    Caldwell, Julie M.
    Barski, Artem
    Rothenberg, Marc E.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2024, 154 (04) : 974 - 987
  • [27] Comprehensive Assessment of Immune Cells in Mouse and Human Atherosclerosis by Single-cell RNA-sequencing and Mass Cytometry
    Winkels, Holger
    Ehinger, Erik
    Vassalo, Melanie
    Buscher, Konrad
    Huy Dinh
    Kobiyama, Kouji
    Hamers, Anouk
    Cochain, Clement
    Vafadarnejad, Ehsan
    Saliba, Antoine E.
    Zernecke, Alma
    Bala, Pramod A.
    Ghosh, Amlan K.
    Michel, Nathaly A.
    Hoppe, Natalie
    Hilgendorf, Ingo
    Zirlik, Andreas
    Hedrick, Catherine
    Ley, Klaus
    Wolf, Dennis
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2018, 38
  • [28] Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics
    Chen, Tao
    Xu, Yiliang
    Xu, Xiaocui
    Wang, Jianzhang
    Qiu, Zhiruo
    Yu, Yayuan
    Jiang, Xiaohong
    Shao, Wanqi
    Bai, Dandan
    Wang, Mingzhu
    Mei, Shuyan
    Cheng, Tao
    Wu, Li
    Gao, Shaorong
    Che, Xuan
    PROTEIN & CELL, 2024, 15 (07) : 530 - 546
  • [29] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [30] Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis
    Lu Yang
    Yan Er Ng
    Haipeng Sun
    Ying Li
    Lucas C. S. Chini
    Nathan K. LeBrasseur
    Jun Chen
    Xu Zhang
    BMC Biology, 21