A comprehensive human embryo reference tool using single-cell RNA-sequencing data

被引:9
|
作者
Zhao, Cheng [1 ,2 ]
Reyes, Alvaro Plaza [1 ,2 ,3 ]
Schell, John Paul [1 ,2 ]
Weltner, Jere [1 ,2 ,4 ,5 ]
Ortega, Nicolas M. [1 ,2 ]
Zheng, Yi [6 ,7 ]
Bjorklund, Asa K. [8 ]
Baque-vidal, Laura [1 ,2 ]
Sokka, Joonas [4 ]
Torokovic, Ras [4 ]
Cox, Brian [9 ]
Rossant, Janet [10 ]
Fu, Jianping [6 ,11 ]
Petropoulos, Sophie [1 ,2 ,12 ,13 ]
Lanner, Fredrik [1 ,2 ,14 ]
机构
[1] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Obstet & Gynecol, Stockholm, Sweden
[2] Karolinska Univ sjukhuset, Div Obstet & Gynecol, Stockholm, Sweden
[3] Andalusian Mol Biol & Regenerat Med Ctr CABIMER, Dept Regenerat & Cell Therapy, Seville, Spain
[4] Univ Helsinki, Stem Cells & Metab Res Program, Helsinki, Finland
[5] Folkhalsan Res Ctr, Helsinki, Finland
[6] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48104 USA
[7] Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY USA
[8] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Natl Bioinformat Infrastruct Sweden, Uppsala, Sweden
[9] Univ Toronto, Fac Med, Dept Physiol, Toronto, ON, Canada
[10] Hosp Sick Children, Program Dev & Stem Cell Biol, Toronto, ON, Canada
[11] Univ Michigan, Dept Cell & Dev Biol, Med Sch, Ann Arbor, MI USA
[12] Univ Montreal, Dept Med, Montreal, PQ, Canada
[13] Ctr Rech Ctr Hosp Univ Montreal, Axe Immunopathol, Montreal, PQ, Canada
[14] Karolinska Inst, Ming Wai Lau Ctr Reparat Med, Stockholm Node, Stockholm, Sweden
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 瑞典研究理事会;
关键词
PLURIPOTENT STEM-CELLS; TROPHOBLAST; PREIMPLANTATION; DIFFERENTIATION; BLASTOCYST; REVEALS; RECONSTRUCTION; EXPRESSION; SIGNATURES; MODELS;
D O I
10.1038/s41592-024-02493-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication. This resource integrates different human embryo datasets to create a transcriptional reference map of human embryonic development from zygote to gastrula.
引用
收藏
页码:193 / 206
页数:35
相关论文
共 50 条
  • [31] Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis
    Yang, Lu
    Ng, Yan Er
    Sun, Haipeng
    Li, Ying
    Chini, Lucas C. S.
    Lebrasseur, Nathan K.
    Chen, Jun
    Zhang, Xu
    BMC BIOLOGY, 2023, 21 (01)
  • [32] Constructing Simulation Data with Dependence Structure for Unreliable Single-Cell RNA-Sequencing Data Using Copulas
    Fuetterer, Cornelia
    Schollmeyer, Georg
    Augustin, Thomas
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 216 - 224
  • [33] Characterization of iCell cardiomyocytes using single-cell RNA-sequencing methods
    Schmid, Christina
    Wohnhaas, Christian T.
    Hildebrandt, Tobias
    Baum, Patrick
    Rast, Georg
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2020, 106
  • [34] CELL SUBCLASS IDENTIFICATION IN SINGLE-CELL RNA-SEQUENCING DATA USING ORTHOGONAL NONNEGATIVE MATRIX FACTORIZATION
    Wang, Shuai
    Wu, Peng
    Zhou, Manqi
    Chang, Tsung-Hui
    Wu, Song
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 876 - 880
  • [35] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [36] Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers
    Sumeer Ahmad Khan
    Alberto Maillo
    Vincenzo Lagani
    Robert Lehmann
    Narsis A. Kiani
    David Gomez-Cabrero
    Jesper Tegner
    Nature Machine Intelligence, 2023, 5 : 1437 - 1446
  • [37] Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers
    Khan, Sumeer Ahmad
    Maillo, Alberto
    Lagani, Vincenzo
    Lehmann, Robert
    Kiani, Narsis A.
    Gomez-Cabrero, David
    Tegner, Jesper
    NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1437 - 1446
  • [38] Power analysis of single-cell RNA-sequencing experiments
    Svensson, Valentine
    Natarajan, Kedar Nath
    Ly, Lam-Ha
    Miragaia, Ricardo J.
    Labalette, Charlotte
    Macaulay, Iain C.
    Cvejic, Ana
    Teichmann, Sarah A.
    NATURE METHODS, 2017, 14 (04) : 381 - +
  • [39] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Tian, Yu
    Zheng, Ruiqing
    Liang, Zhenlan
    Li, Suning
    Wu, Fang-Xiang
    Li, Min
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 772 - 789
  • [40] Power analysis of single-cell RNA-sequencing experiments
    Valentine Svensson
    Kedar Nath Natarajan
    Lam-Ha Ly
    Ricardo J Miragaia
    Charlotte Labalette
    Iain C Macaulay
    Ana Cvejic
    Sarah A Teichmann
    Nature Methods, 2017, 14 : 381 - 387