Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning

被引:0
|
作者
Rhein, Frank [1 ]
Sehn, Timo [2 ]
Meier, Michael A. R. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, D-76344 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Organ Chem IOC, D-76131 Karlsruhe, Germany
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Machine learning; Degree of substitution; Infrared spectroscopy; Cellulose ester; Cellulose acetate; SWITCHABLE SOLVENT; ESTERS;
D O I
10.1038/s41598-025-86378-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}{-}\hbox {H}}$$\end{document} peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.1-0.2$$\end{document} in DS and model architectures for a more general analysis of cellulose esters were proposed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Accurate identification of traumatic lung injury (TLI) by ATR-FTIR spectroscopy combined with chemometrics
    Liang, Xinggong
    Wang, Gongji
    Li, Zefeng
    Chen, Run
    Wu, Hao
    Li, Huiyu
    Shen, Chen
    Deng, Mingyan
    Hao, Zeyi
    Wu, Shuo
    Yu, Kai
    Wei, Xin
    Liu, Ruina
    Zhang, Kai
    Sun, Qinru
    Wang, Zhenyuan
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 288
  • [42] Classification and Prediction by Pigment Content in Lettuce (Lactuca sativa L.) Varieties Using Machine Learning and ATR-FTIR Spectroscopy
    Falcioni, Renan
    Moriwaki, Thaise
    Gibin, Mariana Sversut
    Vollmann, Alessandra
    Pattaro, Mariana Carmona
    Giacomelli, Marina Ellen
    Sato, Francielle
    Nanni, Marcos Rafael
    Antunes, Werner Camargos
    PLANTS-BASEL, 2022, 11 (24):
  • [43] Highly Efficient Use of Infrared Spectroscopy (ATR-FTIR) to Identify Aphid Species
    Durak, Roma
    Ciak, Beata
    Durak, Tomasz
    BIOLOGY-BASEL, 2022, 11 (08):
  • [44] Determination of isotopic ratio of boron in boric acid solutions by ATR-FTIR spectroscopy
    Lefevre, Gregory
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2023, 332 (2) : 337 - 342
  • [45] Rapid determination and classification of crude oils by ATR-FTIR spectroscopy and chemometric methods
    Mohammadi, Mahsa
    Khorrami, Mohammadreza Khanmohammadi
    Vatani, Ali
    Ghasemzadeh, Hossein
    Vatanparast, Hamid
    Bahramian, Alireza
    Fallah, Afshin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 232
  • [46] Determination of Nutrient Supplementation by Means of ATR-FTIR Spectroscopy during Wine Fermentation
    Puxeu, Miquel
    Andorra, Imma
    De Lamo-Castellvi, Silvia
    Ferrer-Gallego, Raul
    FERMENTATION-BASEL, 2019, 5 (03):
  • [47] Determination of metformin in fixed-dose combination tablets by ATR-FTIR spectroscopy
    Sabbagh, B. A.
    Kumar, P. V.
    Chew, Y. L.
    Chin, J. H.
    Akowuah, G. A.
    CHEMICAL DATA COLLECTIONS, 2022, 39
  • [48] Phylogenetic differentiation of Aegilops and Triticum species by using ATR-FTIR spectroscopy
    Demir, Pinar
    Onde, Sertac
    Ozgen, Murat
    Birsin, Melahat Avci
    Severcan, Feride
    JOURNAL OF BIOTECHNOLOGY, 2012, 161 : 32 - 32
  • [49] Expedient, accurate methods for the determination of the degree of substitution of cellulose carboxylic esters: Application of UV-vis spectroscopy (dye solvatochromism) and FTIR
    Casarano, Romeu
    Fidale, Ludmila C.
    Lucheti, Camila M.
    Heinze, Thomas
    El Seoud, Omar A.
    CARBOHYDRATE POLYMERS, 2011, 83 (03) : 1285 - 1292
  • [50] Discriminating the salivary profile of athletes using ATR-FTIR spectroscopy and chemometrics
    Chrimatopoulos, Christoforos
    Pavlou, Eleftherios
    Kourkoumelis, Nikolaos
    Sakkas, Vasilios
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 230