Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning

被引:0
|
作者
Rhein, Frank [1 ]
Sehn, Timo [2 ]
Meier, Michael A. R. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, D-76344 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Organ Chem IOC, D-76131 Karlsruhe, Germany
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Machine learning; Degree of substitution; Infrared spectroscopy; Cellulose ester; Cellulose acetate; SWITCHABLE SOLVENT; ESTERS;
D O I
10.1038/s41598-025-86378-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}{-}\hbox {H}}$$\end{document} peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.1-0.2$$\end{document} in DS and model architectures for a more general analysis of cellulose esters were proposed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy
    Togkalidou, T
    Fujiwara, M
    Patel, S
    Braatz, RD
    JOURNAL OF CRYSTAL GROWTH, 2001, 231 (04) : 534 - 543
  • [32] Chemical imaging of microfluidic flows using ATR-FTIR spectroscopy
    Chan, K. L. Andrew
    Gulati, Shelly
    Edel, Joshua B.
    de Mello, Andrew J.
    Kazarian, Sergei G.
    LAB ON A CHIP, 2009, 9 (20) : 2909 - 2913
  • [33] CHARACTERIZATION OF HISTORICAL VIOLIN VARNISHES USING ATR-FTIR SPECTROSCOPY
    Cortea, Ioana Maria
    Cristache, Raluca
    Sandu, Ion
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (02) : 615 - 622
  • [34] Discrimination of electrical tapes using ATR-FTIR spectroscopy and chemometrics
    Nimi, Chongtham
    Chophi, Rito
    Singh, Rajinder
    JOURNAL OF FORENSIC SCIENCES, 2022, 67 (03) : 911 - 926
  • [35] Adsorption of rhamnolipid on alumina using ATR-FTIR spectroscopy.
    Lebron-Paler, A
    Pemberton, JE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U86 - U86
  • [36] In-line monitoring of butyl acrylate/vinyl acetate emulsion copolymerizations using ATR-FTIR spectroscopy
    Jovanovic, R
    Dubé, MA
    POLYMER REACTION ENGINEERING, 2003, 11 (03): : 233 - 257
  • [37] ATR-FTIR spectroscopy and Machine learning for sustainable wood sourcing and species Identification: Applications to wood forensics
    Sharma, Akanksha
    Garg, Suraj
    Sharma, Vishal
    MICROCHEMICAL JOURNAL, 2024, 200
  • [38] Efficient identification and distinction of musgravite and taaffeite with the utilization of ATR-FTIR spectroscopy and Raman spectroscopy
    Thongnopkun, Pimthong
    VIBRATIONAL SPECTROSCOPY, 2024, 135
  • [39] Machine learning ATR-FTIR spectroscopy data for the screening of collagen for ZooMS analysis and mtDNA in archaeological bone
    Chowdhury, Manasij Pal
    Choudhury, Kaustabh Datta
    Bouchard, Genevieve Pothier
    Riel-Salvatore, Julien
    Negrino, Fabio
    Benazzi, Stefano
    Slimak, Ludovic
    Frasier, Brenna
    Szabo, Vicki
    Harrison, Ramona
    Hambrecht, George
    Kitchener, Andrew C.
    Wogelius, Roy A.
    Buckley, Michael
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2021, 126
  • [40] Determination of Dental Adhesive Composition throughout Solvent Drying and Polymerization Using ATR-FTIR Spectroscopy
    Almusa, Arwa
    Delgado, Antonio H. S.
    Ashley, Paul
    Young, Anne M.
    POLYMERS, 2021, 13 (22)