Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning

被引:0
|
作者
Rhein, Frank [1 ]
Sehn, Timo [2 ]
Meier, Michael A. R. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, D-76344 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Organ Chem IOC, D-76131 Karlsruhe, Germany
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Machine learning; Degree of substitution; Infrared spectroscopy; Cellulose ester; Cellulose acetate; SWITCHABLE SOLVENT; ESTERS;
D O I
10.1038/s41598-025-86378-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}{-}\hbox {H}}$$\end{document} peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.1-0.2$$\end{document} in DS and model architectures for a more general analysis of cellulose esters were proposed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Sex and blood group determination from hair using ATR-FTIR spectroscopy and chemometrics
    Sharma, Sweety
    Gupta, Srishti
    Yadav, Praveen Kumar
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2024, 138 (03) : 801 - 814
  • [22] Sex and blood group determination from hair using ATR-FTIR spectroscopy and chemometrics
    Sweety Sharma
    Srishti Gupta
    Praveen Kumar Yadav
    International Journal of Legal Medicine, 2024, 138 : 801 - 814
  • [23] Monitoring changes in urine from diabetic rats using ATR-FTIR and Machine Learning
    Farooq, Sajid
    Peres, Daniella L. Prime Umara
    Caixeta, Douglas Carvalho
    Lima, Cassio
    da Silva, Robinson Sabino
    Zezell, Denise Maria
    2023 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS, OMN AND SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE, SBFOTON IOPC, 2023,
  • [24] AN ATR-FTIR STUDY OF WATER IN CELLULOSE-ACETATE MEMBRANES PREPARED BY PHASE INVERSION
    MURPHY, D
    DEPINHO, MN
    JOURNAL OF MEMBRANE SCIENCE, 1995, 106 (03) : 245 - 257
  • [25] Heatstroke death identification using ATR-FTIR spectroscopy combined with a novel multi-organ machine learning approach
    Xiong, Hongli
    Jia, Zijie
    Cao, Yuhang
    Bian, Cunhao
    Zhu, Shisheng
    Lin, Ruijiao
    Wei, Bi
    Wang, Qi
    Li, Jianbo
    Yu, Kai
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 325
  • [26] Automated Classification of Undegraded and Aged Polyethylene Terephthalate Microplastics from ATR-FTIR Spectroscopy using Machine Learning Algorithms
    Enyoh, Christian Ebere
    Wang, Qingyue
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2024, 32 (09) : 4143 - 4158
  • [27] Determination of Simvastatin Induced Variations in Sciatic Nerve by ATR-FTIR Spectroscopy
    Ozgun, Kumsal
    Ozek, Nihal Simsek
    Severcan, Feride
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 312A - 312A
  • [28] Urinalysis of individuals with renal hyperfiltration using ATR-FTIR spectroscopy
    Kurultak, Ilhan
    Sarigul, Neslihan
    Kodal, Nil Su
    Korkmaz, Filiz
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [29] Urinalysis of individuals with renal hyperfiltration using ATR-FTIR spectroscopy
    İlhan Kurultak
    Neslihan Sarigul
    Nil Su Kodal
    Filiz Korkmaz
    Scientific Reports, 12 (1)
  • [30] Quantification and Identification of Microproteinuria Using Ultrafiltration and ATR-FTIR Spectroscopy
    Perez-Guaita, David
    Richardson, Zack
    Heraud, Philip
    Wood, Bayden
    ANALYTICAL CHEMISTRY, 2020, 92 (03) : 2409 - 2416