Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning

被引:0
|
作者
Rhein, Frank [1 ]
Sehn, Timo [2 ]
Meier, Michael A. R. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, D-76344 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Organ Chem IOC, D-76131 Karlsruhe, Germany
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Machine learning; Degree of substitution; Infrared spectroscopy; Cellulose ester; Cellulose acetate; SWITCHABLE SOLVENT; ESTERS;
D O I
10.1038/s41598-025-86378-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}{-}\hbox {H}}$$\end{document} peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.1-0.2$$\end{document} in DS and model architectures for a more general analysis of cellulose esters were proposed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Determination of the degree of substitution of cellulose esters via ATR-FTIR spectroscopy
    Wolfs, Jonas
    Scheelje, F. Clara M.
    Matveyeva, Olga
    Meier, Michael A. R.
    JOURNAL OF POLYMER SCIENCE, 2023, 61 (21) : 2697 - 2707
  • [2] Predictive Modeling for Degree of Substitution of Cellulose Acetate using Infrared Spectroscopy and Machine Learning
    Lee Y.J.
    Lee J.E.
    Gwon J.G.
    Lee T.J.
    Kim H.J.
    Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2023, 55 (05): : 83 - 95
  • [3] Diabetes Monitoring through Urine Analysis Using ATR-FTIR Spectroscopy and Machine Learning
    Farooq, Sajid
    Zezell, Denise Maria
    CHEMOSENSORS, 2023, 11 (11)
  • [4] Advancing tobacco Authentication through a Synergistic approach using ATR-FTIR spectroscopy and Machine learning
    Mahay, Manmeet Kaur
    Sharma, Akanksha
    Sharma, Vishal
    MICROCHEMICAL JOURNAL, 2024, 207
  • [5] Cigarette paper as evidence: Forensic profiling using ATR-FTIR spectroscopy and machine learning algorithms
    Kapoor, Muskaan
    Sharma, Akanksha
    Sharma, Vishal
    FORENSIC SCIENCE INTERNATIONAL, 2024, 363
  • [6] Simultaneous determination of additive concentration in rubber using ATR-FTIR spectroscopy
    Merriman, Stephen
    Chandra, Dinesh
    Borowczak, Marc
    Dhinojwala, Ali
    Benko, David
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 281
  • [7] Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning
    Xiangyan Zhang
    Jiao Xiao
    Fengqin Yang
    Hongke Qu
    Chengxin Ye
    Sile Chen
    Yadong Guo
    International Journal of Legal Medicine, 2024, 138 : 1139 - 1148
  • [8] Detection of Verticillium infection in cotton leaves using ATR-FTIR spectroscopy coupled with machine learning algorithms
    Li, Xianchang
    Zhang, Lipeng
    Zhang, Shiding
    Shang, Haihong
    Xu, Yizhong
    Luo, Yongping
    Xu, Shunjian
    Wang, Yuling
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 325
  • [9] Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning
    Zhang, Xiangyan
    Xiao, Jiao
    Yang, Fengqin
    Qu, Hongke
    Ye, Chengxin
    Chen, Sile
    Guo, Yadong
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2024, 138 (03) : 1139 - 1148
  • [10] Determination of changes in plasma structure during extracorporeal circulation - studies by ATR-FTIR spectroscopy and machine learning methods
    Olsztynska-Janus, Sylwia
    Kmiecik, Barbara
    Krawczyk, Bartosz
    Komorowska, Malgorzata
    PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 1416 - +