TWO-DIMENSIONAL FRACTIONAL WAVE EQUATION VIA A NEW NUMERICAL APPROACH

被引:0
|
作者
Batiha, Iqbal M. [1 ,2 ]
Jebril, Iqbal H. [1 ]
Anakira, Nidal [3 ]
Al-Nana, Abeer A. [4 ]
Batyha, Radwan [5 ]
Momani, Shaher [2 ,6 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, POB 130, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Sohar Univ, Fac Educ & Arts, Sohar, Oman
[4] Prince Sattam Bin Abdulaziz Univ, Dept Math, Alkharj 11942, Saudi Arabia
[5] Appl Sci Univ, Dept Comp Sci, Amman 11937, Jordan
[6] Univ Jordan, Dept Math, Amman 11942, Jordan
关键词
Two-dimensional fractional wave equation; Fractional calculus; Lagrange interpolating polynomial; Fractional difference formula;
D O I
10.24507/ijicic.20.04.1045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main goal of this work is to solve the fractional wave equation in two dimensions numerically with the use of some novel fractional formulas. In particular, the proposed approach used to deal with the fractional wave equation introduces two novel fractional difference formulas for approximating the Caputo differentiator of order delta and 2 delta , respectively, where0<delta <= 1. Such formulas, which are derived based on the Lagrange interpolating polynomial, can generate a system of linear equations that can be solved numerically to obtain, ultimately, good approximate solutions to the fractional wave equation for different fractional-order values.
引用
收藏
页码:1045 / 1059
页数:15
相关论文
共 50 条
  • [41] Model quakes in the two-dimensional wave equation
    Shaw, BE
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B12) : 27367 - 27377
  • [42] The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation
    Shen, Shujun
    Liu, Fawang
    Anh, Vo V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 515 - 534
  • [43] A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation
    Ding, Hengfei
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 30 - 46
  • [44] The two-dimensional fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (33)
  • [45] A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional Cable equation
    Khan, Muhammad Asim
    Alias, Norma
    Khan, Ilyas
    Salama, Fouad Mohammad
    Eldin, Sayed M.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [46] A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional Cable equation
    Muhammad Asim Khan
    Norma Alias
    Ilyas Khan
    Fouad Mohammad Salama
    Sayed M. Eldin
    Scientific Reports, 13 (1)
  • [47] A robust approach for computing solutions of fractional-order two-dimensional Helmholtz equation
    Nadeem, Muhammad
    Li, Zitian
    Kumar, Devendra
    Alsayaad, Yahya
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [48] Parametric Quintic Spline Approach for Two-dimensional Fractional Sub-diffusion Equation
    Li, Xuhao
    Wong, Patricia J. Y.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [49] A robust approach for computing solutions of fractional-order two-dimensional Helmholtz equation
    Muhammad Nadeem
    Zitian Li
    Devendra Kumar
    Yahya Alsayaad
    Scientific Reports, 14
  • [50] Laguerre Wavelet Approach for a Two-Dimensional Time-Space Fractional Schrodinger Equation
    Bekiros, Stelios
    Soradi-Zeid, Samaneh
    Mou, Jun
    Yousefpour, Amin
    Zambrano-Serrano, Ernesto
    Jahanshahi, Hadi
    ENTROPY, 2022, 24 (08)