Parametric Quintic Spline Approach for Two-dimensional Fractional Sub-diffusion Equation

被引:0
|
作者
Li, Xuhao [1 ]
Wong, Patricia J. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
FINITE-DIFFERENCE SCHEME;
D O I
10.1063/1.5043780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall tackle the numerical treatment of two-dimensional fractional sub-diffusion equations using parametric quintic spline. It is shown that this numerical scheme is solvable, stable and convergent with high accuracy which improves some earlier work. Finally, we carry out an experiment to demonstrate the efficiency of our numerical scheme.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation
    Yang, Xuehua
    Zhang, Haixiang
    Xu, Da
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 256 : 824 - 837
  • [2] Non-polynomial spline approach in two-dimensional fractional sub-diffusion problems
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 357 : 222 - 242
  • [3] Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
    Zhang, Ya-nan
    Sun, Zhi-zhong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (24) : 8713 - 8728
  • [4] Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (05):
  • [5] A cardinal approach for two-dimensional modified anomalous space-time fractional sub-diffusion equation
    Heydari, M. H.
    [J]. RESULTS IN PHYSICS, 2023, 49
  • [6] A compact ADI scheme for two-dimensional fractional sub-diffusion equation with Neumann boundary condition
    Cheng, Xiujun
    Qin, Hongyu
    Zhang, Jiwei
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 50 - 62
  • [7] The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 775 - 791
  • [8] New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation
    Ali, Ajmal
    Abbas, Muhammad
    Akram, Tayyaba
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (02): : 119 - 127
  • [9] A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation
    Lin, Xue-lei
    Lu, Xin
    Ng, Micheal K.
    Sun, Hai-Wei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 323 : 204 - 218
  • [10] Explicit Saul'yev Finite Difference Approximation for Two-Dimensional Fractional Sub-diffusion Equation
    Ali, Umair
    Abdullah, Farah Aini
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974