TWO-DIMENSIONAL FRACTIONAL WAVE EQUATION VIA A NEW NUMERICAL APPROACH

被引:0
|
作者
Batiha, Iqbal M. [1 ,2 ]
Jebril, Iqbal H. [1 ]
Anakira, Nidal [3 ]
Al-Nana, Abeer A. [4 ]
Batyha, Radwan [5 ]
Momani, Shaher [2 ,6 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, POB 130, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Sohar Univ, Fac Educ & Arts, Sohar, Oman
[4] Prince Sattam Bin Abdulaziz Univ, Dept Math, Alkharj 11942, Saudi Arabia
[5] Appl Sci Univ, Dept Comp Sci, Amman 11937, Jordan
[6] Univ Jordan, Dept Math, Amman 11942, Jordan
关键词
Two-dimensional fractional wave equation; Fractional calculus; Lagrange interpolating polynomial; Fractional difference formula;
D O I
10.24507/ijicic.20.04.1045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main goal of this work is to solve the fractional wave equation in two dimensions numerically with the use of some novel fractional formulas. In particular, the proposed approach used to deal with the fractional wave equation introduces two novel fractional difference formulas for approximating the Caputo differentiator of order delta and 2 delta , respectively, where0<delta <= 1. Such formulas, which are derived based on the Lagrange interpolating polynomial, can generate a system of linear equations that can be solved numerically to obtain, ultimately, good approximate solutions to the fractional wave equation for different fractional-order values.
引用
收藏
页码:1045 / 1059
页数:15
相关论文
共 50 条
  • [31] Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    A. H. Bhrawy
    M. A. Zaky
    Nonlinear Dynamics, 2015, 80 : 101 - 116
  • [32] Numerical investigation of two-dimensional fractional Helmholtz equation using Aboodh transform scheme
    Nadeem, Muhammad
    Sharaf, Mohamed
    Mahamad, Saipunidzam
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2024, 34 (12) : 4520 - 4534
  • [33] An accurate numerical technique for solving two-dimensional time fractional order diffusion equation
    Nagy, A. M.
    El-Sayed, Adel A.
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2019, 39 (03): : 214 - 221
  • [34] A NUMERICAL METHOD FOR TWO-DIMENSIONAL DISTRIBUTED-ORDER FRACTIONAL NONLINEAR SOBOLEV EQUATION
    Zhagharian, Sh.
    Heydari, M. H.
    Razzaghi, M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2630 - 2645
  • [35] A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    Tadjeran, Charles
    Meerschaert, Mark M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) : 813 - 823
  • [36] Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    Bhrawy, A. H.
    Zaky, M. A.
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 101 - 116
  • [37] ON A BACKWARD PROBLEM FOR TWO-DIMENSIONAL TIME FRACTIONAL WAVE EQUATION WITH DISCRETE RANDOM DATA
    Nguyen Huy Tuan
    Tran Ngoc Thach
    Zhou, Yong
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (02): : 561 - 579
  • [38] A New Legendre Collocation Method for Solving a Two-Dimensional Fractional Diffusion Equation
    Bhrawy, A. H.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [39] Numerical solution of the two-dimensional Poincare equation
    Swart, Arno
    Sleijpen, Gerard L. G.
    Maas, Leo R. M.
    Brandts, Jan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 317 - 341
  • [40] A numerical solution of a two-dimensional transport equation
    Martin, Olga
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (02): : 191 - 198