Fourier Multipliers and Pseudo-differential Operators on Fock-Sobolev SpacesOperators on Fock-Sobolev SpacesS. Thangavelu

被引:0
|
作者
Sundaram Thangavelu [1 ]
机构
[1] Indian Institute of Science,Department of Mathematics
关键词
Fock space; Bargmann transform; Fourier multipliers; Pseudo-differential operators; Primary 30H20; 42A38; Secondary 42B15; 44A15;
D O I
10.1007/s00020-024-02789-0
中图分类号
学科分类号
摘要
Any bounded linear operator T on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2({\mathbb {R}}^n) $$\end{document} gives rise to the operator S=B∘T∘B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S= B \circ T \circ B^*$$\end{document} on the Fock space F(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}({{\mathbb {C}}}^n) $$\end{document} where B is the Bargmann transform. In this article we identify those S which correspond to Fourier multipliers and pseudo-differential operators on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2({\mathbb {R}}^n)$$\end{document} and study their boundedness on the Fock-Sobolev spaces Fs,2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}^{s,2}({{\mathbb {C}}}^n)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Integral Operators on Fock-Sobolev Spaces via Multipliers on Gauss-Sobolev Spaces
    Wick, Brett D.
    Wu, Shengkun
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (02)
  • [2] Commuting Toeplitz operators on the Fock-Sobolev space
    Fan, Junmei
    Liu, Liu
    Lu, Yufeng
    ADVANCES IN OPERATOR THEORY, 2022, 7 (03)
  • [3] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [4] Factorization of the Fock-Sobolev space
    Cho, Hong Rae
    Lee, Han-Wool
    Park, Soohyun
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (08) : 1344 - 1351
  • [5] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [6] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [7] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [8] Linear Combinations of Composition Operators on the Fock-Sobolev Spaces
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2014, 41 : 1223 - 1246
  • [9] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [10] Linear Combinations of Composition Operators on the Fock-Sobolev Spaces
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1223 - 1246