Reliability of hierarchical cubic networks based on component fault pattern

被引:0
|
作者
Lv, Mengjie [1 ]
Liu, Xuanli [1 ]
Dong, Hui [1 ]
Fan, Weibei [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Comp, Nanjing 210003, Jiangsu, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 05期
关键词
Reliability; Hierarchical cubic networks; Component connectivity; Component diagnosability; CONDITIONAL DIAGNOSABILITY; MULTIPROCESSOR SYSTEMS; CONNECTIVITY;
D O I
10.1007/s11227-025-07174-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Interconnection networks are critical to high-performance computing systems, where reliability is a key metric for evaluating network efficiency. Connectivity and diagnosability, as two fundamental indicators, play a crucial role in characterizing network reliability. As extensions of classical metrics, (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component connectivity and (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component diagnosability provide a more refined assessment of system resilience and fault tolerance. In this paper, we establish the (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component connectivity of the n-dimensional hierarchical cubic network HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document} as c kappa r+1(HCNn)=-12r2+(n+12)r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\kappa _{r+1}(HCN_n)=-\frac{1}{2}r<^>2+(n+\frac{1}{2})r+1$$\end{document} for n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and 1 <= r <= n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le n-2$$\end{document}, where n represents the dimension of HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}, and r denotes the number of components after node removals. Additionally, we determine the (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component diagnosability of HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document} under the Preparata-Metze-Chien model (PMC model) and the generalized Maeng-Malek model (MM* model) as ctr+1(HCNn)=-12r2+(n-12)r+n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ct_{r+1}(HCN_n)=-\frac{1}{2}r<^>2+(n-\frac{1}{2})r+n+1$$\end{document} for n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and 1 <= r <= n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le n-2$$\end{document}. Extensive simulations demonstrate that component connectivity consistently outperforms classical, conditional, and structural connectivity metrics, while component diagnosability significantly surpasses their corresponding diagnosability measures in HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}. Although our analysis focuses on the specific regular network HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}, the findings offer valuable insights and underscore the effectiveness of component-based connectivity and diagnosability for a broader class of cube-like networks.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] K-TERMINAL RELIABILITY OF HIERARCHICAL NETWORKS
    NG, TP
    IEEE TRANSACTIONS ON RELIABILITY, 1991, 40 (02) : 218 - 225
  • [32] Fault Pattern Recognition using Dynamic Independent Component based Sparse Kernel Classifier
    Deng Xiaogang
    Tian Xuemin
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 5322 - 5327
  • [33] A Protection Scheme Based on Positive Sequence Fault Component for Active Distribution Networks
    Yang, Jingjing
    Zhou, Chenghan
    Zou, Guibin
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018,
  • [34] Component Fault Location in Optical Networks based on Attention Mechanism with Monitoring Data
    Zeng, Chuidian
    Zhang, Jiawei
    Wang, Ruikun
    Zhang, Bojun
    Ji, Yuefeng
    2022 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2022,
  • [35] Reliability analysis of gas turbine systems based on fault tree and Bayesian networks
    Zhang, Jiwang
    Zhang, Laibin
    Duan, Lixiang
    Wang, Jinjiang
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 2687 - 2691
  • [36] Reliability Analysis of Fault-Tolerant Bus-Based Interconnection Networks
    Bistouni, Fathollah
    Jahanshahi, Mohsen
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2016, 32 (05): : 541 - 568
  • [37] Application of hierarchical networks in analog pattern categorization
    Ryan, Thomas W.
    Neural Networks, 1988, 1 (1 SUPPL)
  • [38] Reliability Analysis of Fault-Tolerant Bus-Based Interconnection Networks
    Fathollah Bistouni
    Mohsen Jahanshahi
    Journal of Electronic Testing, 2016, 32 : 541 - 568
  • [39] Matching preclusion and conditional matching preclusion for hierarchical cubic networks
    Zou, Jinyu
    Ren, Haizhen
    AIMS MATHEMATICS, 2022, 7 (07): : 13225 - 13236
  • [40] Hyper star structure connectivity of hierarchical folded cubic networks
    Guo, Huimei
    Hao, Rong-Xia
    Chang, Jou-Ming
    Kwon, Young Soo
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10): : 14224 - 14241