Hyper star structure connectivity of hierarchical folded cubic networks

被引:1
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Chang, Jou-Ming [2 ]
Kwon, Young Soo [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Natl Taipei Univ Business, Inst Informat & Decis Sci, Taipei 10051, Taiwan
[3] Yeungnam Univ, Dept Math, Gyongsan 38541, South Korea
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 10期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Hierarchical folded cube; Structure connectivity; Hyper structure connected; Interconnection network; FAULT-TOLERANCE; COMPONENT;
D O I
10.1007/s11227-024-05992-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing popularity and diversity of network environments, it is crucial to assess the fault tolerance and stability of the network. Structure connectivity and substructure connectivity are two novel indicators that can better measure the network's fault tolerance compared to traditional connectivity. Additionally, analyzing a network's minimum structure cuts and minimum substructure cuts is an interesting and important subject. For a graph G, let R and M be two connected subgraphs of G. An R-structure cut (resp. R-substructure cut) of G is a set of subgraphs of G, such that each subgraph in the set is isomorphic to R (resp. is isomorphic to a connected subgraph of R), whose deletion disconnects G. If the removal of any minimum R-structure cut (resp. R-substructure cut) divides G into exactly two components, one of which is isomorphic to M, then G is referred to as hyper R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected (resp. hyper sub-R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected). This paper first studies the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity and sub-K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity of hierarchical folded cubic network HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document}. Specifically, we determine both of them are left ceiling n+22 right ceiling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{n+2}{2}\rceil$$\end{document} for n >= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 7$$\end{document} and 2 <= r <= n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r\le n-1$$\end{document}. Then, we prove that HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document} is hyper K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected and hyper sub-K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected.
引用
收藏
页码:14224 / 14241
页数:18
相关论文
共 50 条
  • [1] Topological properties of folded hyper-star networks
    Kim, Jong-Seok
    Kim, Sung Won
    Cheng, Eddie
    Liptak, Laszlo
    JOURNAL OF SUPERCOMPUTING, 2012, 59 (03): : 1336 - 1347
  • [2] Topological properties of folded hyper-star networks
    Jong-Seok Kim
    Sung Won Kim
    Eddie Cheng
    László Lipták
    The Journal of Supercomputing, 2012, 59 : 1336 - 1347
  • [3] Hyper Star Fault Tolerance of Hierarchical Star Networks
    Yang, Lulu
    Hua, Xiaohui
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (04)
  • [4] On Component Connectivity of Hierarchical Star Networks
    Gu, Mei-Mei
    Chang, Jou-Ming
    Hao, Rong-Xia
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (03) : 313 - 326
  • [5] The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes
    Ba, Lina
    Zhang, Heping
    COMPUTER JOURNAL, 2022, 65 (12): : 3156 - 3166
  • [6] Component conditional fault tolerance of hierarchical folded cubic networks
    Sun, Xueli
    Fan, Jianxi
    Cheng, Baolei
    Liu, Zhao
    Yu, Jia
    THEORETICAL COMPUTER SCIENCE, 2021, 883 : 44 - 58
  • [7] The generalized 4-connectivity of hierarchical cubic networks
    Zhao, Shu-Li
    Hao, Rong-Xia
    Wu, Jie
    DISCRETE APPLIED MATHEMATICS, 2021, 289 : 194 - 206
  • [8] Star-structure connectivity of folded hypercubes and augmented cubes
    Lina Ba
    Hailun Wu
    Heping Zhang
    The Journal of Supercomputing, 2023, 79 : 3257 - 3276
  • [9] Star-structure connectivity of folded hypercubes and augmented cubes
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (03): : 3257 - 3276
  • [10] Generalized 4-connectivity of hierarchical star networks
    Wang, Junzhen
    Zou, Jinyu
    Zhang, Shumin
    OPEN MATHEMATICS, 2022, 20 (01): : 1261 - 1275