Hyper star structure connectivity of hierarchical folded cubic networks

被引:1
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Chang, Jou-Ming [2 ]
Kwon, Young Soo [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Natl Taipei Univ Business, Inst Informat & Decis Sci, Taipei 10051, Taiwan
[3] Yeungnam Univ, Dept Math, Gyongsan 38541, South Korea
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 10期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Hierarchical folded cube; Structure connectivity; Hyper structure connected; Interconnection network; FAULT-TOLERANCE; COMPONENT;
D O I
10.1007/s11227-024-05992-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing popularity and diversity of network environments, it is crucial to assess the fault tolerance and stability of the network. Structure connectivity and substructure connectivity are two novel indicators that can better measure the network's fault tolerance compared to traditional connectivity. Additionally, analyzing a network's minimum structure cuts and minimum substructure cuts is an interesting and important subject. For a graph G, let R and M be two connected subgraphs of G. An R-structure cut (resp. R-substructure cut) of G is a set of subgraphs of G, such that each subgraph in the set is isomorphic to R (resp. is isomorphic to a connected subgraph of R), whose deletion disconnects G. If the removal of any minimum R-structure cut (resp. R-substructure cut) divides G into exactly two components, one of which is isomorphic to M, then G is referred to as hyper R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected (resp. hyper sub-R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected). This paper first studies the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity and sub-K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity of hierarchical folded cubic network HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document}. Specifically, we determine both of them are left ceiling n+22 right ceiling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{n+2}{2}\rceil$$\end{document} for n >= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 7$$\end{document} and 2 <= r <= n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r\le n-1$$\end{document}. Then, we prove that HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document} is hyper K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected and hyper sub-K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected.
引用
收藏
页码:14224 / 14241
页数:18
相关论文
共 50 条
  • [41] On conditional fault tolerance and diagnosability of hierarchical cubic networks
    Zhou, Shuming
    Song, Sulin
    Yang, Xiaoxue
    Chen, Lanxiang
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 421 - 433
  • [42] Hyper star structure fault tolerance of half hypercube
    Yang, Lulu
    Zhou, Shuming
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 23609 - 23627
  • [43] Super spanning connectivity of split-star networks
    Li, Jing
    Li, Xujing
    Cheng, Eddie
    INFORMATION PROCESSING LETTERS, 2021, 166
  • [44] The h-extra connectivity of the star graph Networks
    Zhu, Qiang
    Chen, Jing
    Li, Lili
    PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 555 - 560
  • [45] CONNECTIVITY OF GENERALIZED HIERARCHICAL COMPLETELY-CONNECTED NETWORKS
    Takabatake, Toshinori
    Nakamigawa, Tomoki
    Ito, Hideo
    JOURNAL OF INTERCONNECTION NETWORKS, 2008, 9 (1-2) : 127 - 139
  • [46] Star-structure connectivity of folded hypercubes and augmented cubes (Sept, 10.1007/s11227-022-04758-z, 2022)
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (05): : 5828 - 5828
  • [47] Connectivity of generalized hierarchical completely-connected networks
    Department of Information Science, Shonan Institute of Technology, 1-1-25, Tsjido-Nishikaigan, Fujisawa-shi, Kanagawa 251-8511, Japan
    不详
    J. Interconnect. Netw., 2008, 1-2 (127-139):
  • [48] Anomalous Lifshitz dimension in hierarchical networks of brain connectivity
    Esfandiary, Samaneh
    Safari, Ali
    Renner, Jakob
    Moretti, Paolo
    Munoz, Miguel A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [49] Structure connectivity and substructure connectivity of n$-cube networks
    Zhang G.
    Wang D.
    IEEE Access, 2019, 7 : 134496 - 134504
  • [50] A New Hierarchical Structure of Star Graphs and Applications
    Shi, Wei
    Luo, Feng
    Srimani, Pradip
    DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY, 2012, 7154 : 267 - 268