Reliability of hierarchical cubic networks based on component fault pattern

被引:0
|
作者
Lv, Mengjie [1 ]
Liu, Xuanli [1 ]
Dong, Hui [1 ]
Fan, Weibei [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Comp, Nanjing 210003, Jiangsu, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 05期
关键词
Reliability; Hierarchical cubic networks; Component connectivity; Component diagnosability; CONDITIONAL DIAGNOSABILITY; MULTIPROCESSOR SYSTEMS; CONNECTIVITY;
D O I
10.1007/s11227-025-07174-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Interconnection networks are critical to high-performance computing systems, where reliability is a key metric for evaluating network efficiency. Connectivity and diagnosability, as two fundamental indicators, play a crucial role in characterizing network reliability. As extensions of classical metrics, (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component connectivity and (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component diagnosability provide a more refined assessment of system resilience and fault tolerance. In this paper, we establish the (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component connectivity of the n-dimensional hierarchical cubic network HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document} as c kappa r+1(HCNn)=-12r2+(n+12)r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\kappa _{r+1}(HCN_n)=-\frac{1}{2}r<^>2+(n+\frac{1}{2})r+1$$\end{document} for n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and 1 <= r <= n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le n-2$$\end{document}, where n represents the dimension of HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}, and r denotes the number of components after node removals. Additionally, we determine the (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component diagnosability of HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document} under the Preparata-Metze-Chien model (PMC model) and the generalized Maeng-Malek model (MM* model) as ctr+1(HCNn)=-12r2+(n-12)r+n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ct_{r+1}(HCN_n)=-\frac{1}{2}r<^>2+(n-\frac{1}{2})r+n+1$$\end{document} for n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and 1 <= r <= n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le n-2$$\end{document}. Extensive simulations demonstrate that component connectivity consistently outperforms classical, conditional, and structural connectivity metrics, while component diagnosability significantly surpasses their corresponding diagnosability measures in HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}. Although our analysis focuses on the specific regular network HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}, the findings offer valuable insights and underscore the effectiveness of component-based connectivity and diagnosability for a broader class of cube-like networks.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] On g-extra conditional diagnosability of hierarchical cubic networks
    Liu, Huiqing
    Zhang, Shunzhe
    Li, Dong
    THEORETICAL COMPUTER SCIENCE, 2019, 790 : 66 - 79
  • [42] Calculation results of reliability in component distribution networks
    Gono, Radomir
    Rusek, Stanislav
    Kratky, Michal
    Leonowicz, Zbigniew
    PROCEEDINGS OF THE 12TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2011, 2011, : 701 - 704
  • [43] Component reliability importance indices for electrical networks
    Hilber, Patrik
    Bertling, Lina
    2007 CONFERENCE PROCEEDINGS IPEC, VOLS 1-3, 2007, : 257 - 263
  • [44] Local Fault Diagnosis Analysis Based on Block Pattern of Regular Diagnosable Networks
    Lin, Limei
    Guan, Kaineng
    Huang, Yanze
    Hsieh, Sun-Yuan
    Chen, Gaolin
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024,
  • [45] Pattern Recognition for Steam Flooding Field Applications Based on Hierarchical Clustering and Principal Component Analysis
    Zhang, Na
    Wei, Mingzhen
    Bai, Baojun
    Wang, Xiaopeng
    Hao, Jian
    Jia, Shun
    ACS OMEGA, 2022, 7 (22): : 18804 - 18815
  • [46] Component based reliability prediction
    ChauPattnaik, Sampa
    Ray, Mitrabinda
    Nayak, Mitali Madhusmita
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2021, 12 (03) : 391 - 406
  • [47] Component based reliability prediction
    Sampa ChauPattnaik
    Mitrabinda Ray
    Mitali Madhusmita Nayak
    International Journal of System Assurance Engineering and Management, 2021, 12 : 391 - 406
  • [48] Hierarchical structure-based model for importance and reliability assessment of water distribution networks
    Jiao, Haiming
    Hu, Zhen
    Yang, Zhijiang
    Zeng, Wen
    Xu, Feng
    Han, Cuiyan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 253
  • [49] Hyper Star Fault Tolerance of Hierarchical Star Networks
    Yang, Lulu
    Hua, Xiaohui
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (04)
  • [50] New component-based reliability model to predict the reliability of component-based software
    Tomar D.
    Tomar P.
    International Journal of Reliability and Safety, 2019, 13 (1-2) : 83 - 95