Effect of current density on electrochemical machining process of laser powder bed fusion manufactured Inconel 718

被引:0
|
作者
Guo, Pengfei [1 ]
Martin, André [2 ]
Zhai, Changshuai [3 ]
Li, Zuo [4 ]
Lu, Xufei [4 ]
Yu, Jun [4 ]
Lin, Xin [4 ]
Odnevall, Inger [5 ]
Gibbons, Michael [1 ]
Schubert, Andreas [2 ]
机构
[1] Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
[2] Professorship Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz,09107, Germany
[3] Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao,266520, China
[4] State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyixilu, Shaanxi, Xi'an,710072, China
[5] KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas vag 51, Stockholm,SE-10044, Sweden
基金
中国国家自然科学基金;
关键词
Electrolytes - Laser chemistry - Laser materials processing - Leveling (machinery) - Machining centers - Niobium metallography - Surface micromachining - Surface roughness - Surface segregation;
D O I
10.1016/j.jmatprotec.2025.118748
中图分类号
学科分类号
摘要
Electrolytic jet machining (EJM) has been widely recognized as one of the effective methods for the surface post-processing of the laser powder bed fusion (LPBF)-components. However, this concept remains challenging due to the limited machining allowance of the LPBF-components and the complexed anodic dissolution behavior, which determine the dimensional accuracy and surface quality of the machined workpiece, respectively. In this work, high current densities ( ≥ 100 A/cm2) are novelly employed to investigate the leveling ratio and transpassive dissolution behavior of LPBF-Inconel 718 for the first time. Compared to 100 A/cm2, 200 A/cm2 improves the leveling ratio to 58.9 % from 57.1 % when the surface roughness is less than 1 µm. However, the high current density up to 200 A/cm2 still cannot inhibit the selective dissolution of the inhomogeneous microstructure, which limits further reduction of the surface roughness. A high current density leads to a rougher micro-surface on horizontal section than low current density, caused by more Nb oxides attached on the horizontal section at high current density generate from continuously distributed Nb-segregation γ phase along the machining depth direction. In addition, the local fine dendrites on vertical section result in a smooth EJM-surface, owing to the relatively uniform dissolution. This investigation provides systematic understanding of leveling process and transpassive dissolution behavior under high current density with complex surface and microstructure, which can further promote synergetic improvements of the surface integrity and dimensional tolerance through controlling the EJM parameters. © 2025 Elsevier B.V.
引用
下载
收藏
相关论文
共 50 条
  • [41] Evaluation of Inconel 718 Metallic Powder to Optimize the Reuse of Powder and to Improve the Performance and Sustainability of the Laser Powder Bed Fusion (LPBF) Process
    Gruber, Konrad
    Smolina, Irina
    Kasprowicz, Marcin
    Kurzynowski, Tomasz
    MATERIALS, 2021, 14 (06)
  • [42] Shrink line impact on the fatigue resistance of Inconel 718 parts manufactured by powder bed fusion of metals using a laser beam
    Goetz, Dominik
    Diller, Johannes
    Achatz, Karoline
    Zaeh, Michael F.
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 115 : 481 - 490
  • [43] Microstructure, mechanical property and heat treatment schedule of the Inconel 718 manufactured by low and high power laser powder bed fusion
    Yang, Huihui
    Wang, Zemin
    Wang, Hongze
    Wu, Yi
    Wang, Haowei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 863
  • [44] Residual stresses and heat treatments of Inconel 718 parts manufactured via metal laser beam powder bed fusion: an overview
    Teixeira, Oscar
    Silva, Francisco J. G.
    Atzeni, Eleonora
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (11-12): : 3139 - 3162
  • [45] Residual stresses and heat treatments of Inconel 718 parts manufactured via metal laser beam powder bed fusion: an overview
    Óscar Teixeira
    Francisco J. G. Silva
    Eleonora Atzeni
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 3139 - 3162
  • [46] Milling of Inconel 718 block supports fabricated using laser powder bed fusion
    Tripathi, Varad
    Armstrong, Andrew
    Gong, Xi
    Manogharan, Guha
    Simpson, Timothy
    De Meter, Edward
    JOURNAL OF MANUFACTURING PROCESSES, 2018, 34 : 740 - 749
  • [47] Effect of the Process Atmosphere Composition on Alloy 718 Produced by Laser Powder Bed Fusion
    Pauzon, Camille
    Markstrom, Andreas
    Dubiez-Le Goff, Sophie
    Hryha, Eduard
    METALS, 2021, 11 (08)
  • [48] Recrystallization and grain growth kinetics of IN718 manufactured by laser powder bed fusion
    Dogu, Merve Nur
    Davut, Kemal
    Obeidi, Muhannad Ahmed
    Yalcin, Mustafa Alp
    Gu, Hengfeng
    Low, Thaddeus Song En
    Ginn, Jon
    Brabazon, Dermot
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 19 : 4242 - 4257
  • [49] High temperature embrittlement of Inconel 625 alloy manufactured by laser powder bed fusion
    Zhang, Hui
    Zhang, Daohua
    Zhu, Jiulong
    Ding, Molei
    An, Xudong
    Wu, Daijian
    Feng, Man
    Sha, Gang
    Hu, Wangyu
    Yang, Tengfei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 900
  • [50] Effect of Scanning Strategies on the Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
    Liu, Linqing
    Wang, Di
    Yang, Yongqiang
    Wang, Zhi
    Qian, Zeyu
    Wu, Shibiao
    Tang, Jinrong
    Han, Changjun
    Tan, Chaolin
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (05)