Effect of current density on electrochemical machining process of laser powder bed fusion manufactured Inconel 718

被引:0
|
作者
Guo, Pengfei [1 ]
Martin, André [2 ]
Zhai, Changshuai [3 ]
Li, Zuo [4 ]
Lu, Xufei [4 ]
Yu, Jun [4 ]
Lin, Xin [4 ]
Odnevall, Inger [5 ]
Gibbons, Michael [1 ]
Schubert, Andreas [2 ]
机构
[1] Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
[2] Professorship Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz,09107, Germany
[3] Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao,266520, China
[4] State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyixilu, Shaanxi, Xi'an,710072, China
[5] KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas vag 51, Stockholm,SE-10044, Sweden
基金
中国国家自然科学基金;
关键词
Electrolytes - Laser chemistry - Laser materials processing - Leveling (machinery) - Machining centers - Niobium metallography - Surface micromachining - Surface roughness - Surface segregation;
D O I
10.1016/j.jmatprotec.2025.118748
中图分类号
学科分类号
摘要
Electrolytic jet machining (EJM) has been widely recognized as one of the effective methods for the surface post-processing of the laser powder bed fusion (LPBF)-components. However, this concept remains challenging due to the limited machining allowance of the LPBF-components and the complexed anodic dissolution behavior, which determine the dimensional accuracy and surface quality of the machined workpiece, respectively. In this work, high current densities ( ≥ 100 A/cm2) are novelly employed to investigate the leveling ratio and transpassive dissolution behavior of LPBF-Inconel 718 for the first time. Compared to 100 A/cm2, 200 A/cm2 improves the leveling ratio to 58.9 % from 57.1 % when the surface roughness is less than 1 µm. However, the high current density up to 200 A/cm2 still cannot inhibit the selective dissolution of the inhomogeneous microstructure, which limits further reduction of the surface roughness. A high current density leads to a rougher micro-surface on horizontal section than low current density, caused by more Nb oxides attached on the horizontal section at high current density generate from continuously distributed Nb-segregation γ phase along the machining depth direction. In addition, the local fine dendrites on vertical section result in a smooth EJM-surface, owing to the relatively uniform dissolution. This investigation provides systematic understanding of leveling process and transpassive dissolution behavior under high current density with complex surface and microstructure, which can further promote synergetic improvements of the surface integrity and dimensional tolerance through controlling the EJM parameters. © 2025 Elsevier B.V.
引用
下载
收藏
相关论文
共 50 条
  • [31] Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718
    Gallmeyer, Thomas G.
    Moorthy, Senthamilaruvi
    Kappes, Branden B.
    Mills, Michael J.
    Amin-Ahmadi, Behnam
    Stebner, Aaron P.
    ADDITIVE MANUFACTURING, 2020, 31
  • [32] Phase transformations during continuous cooling in Inconel 718 alloys manufactured by laser powder bed fusion and suction casting
    Zhao, Yunhao
    Zhang, Qiaofu
    Xiong, Wei
    Liangyan, Hao
    MATERIALS CHARACTERIZATION, 2022, 185
  • [33] Effects of laser-energy density and build orientation on the structure-property relationships in as-built Inconel 718 manufactured by laser powder bed fusion
    Watring, Dillon S.
    Benzing, Jake T.
    Hrabe, Nikolas
    Spear, Ashley D.
    ADDITIVE MANUFACTURING, 2020, 36
  • [34] The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion
    Sanchez, S.
    Gaspard, G.
    Hyde, C. J.
    Ashcroft, I. A.
    Ravi, G. A.
    Clare, A. T.
    MATERIALS & DESIGN, 2021, 204
  • [35] Optimization of the Post-Process Heat Treatment of Inconel 718 Superalloy Fabricated by Laser Powder Bed Fusion Process
    Fayed, Eslam M.
    Saadati, Mohammad
    Shahriari, Davood
    Brailovski, Vladimir
    Jahazi, Mohammad
    Medraj, Mamoun
    METALS, 2021, 11 (01) : 1 - 27
  • [36] The precipitation behavior effect of δ and γ" phases on mechanical properties of laser powder bed fusion Inconel 718 alloy
    Cheng W.
    Sun Y.
    Ma R.
    Wang Y.
    Bai J.
    Xue L.
    Yang J.
    Liu H.
    Song X.
    Tan C.
    Yuan Q.
    Materials Characterization, 2022, 194
  • [37] Effect of powder reuse on tensile, compressive, and creep strength of Inconel 718 fabricated via laser powder bed fusion
    Bhowmik, Shubhrodev
    McWilliams, Brandon A.
    Knezevic, Marko
    MATERIALS CHARACTERIZATION, 2022, 190
  • [38] Effect of Powder Recycling on Environment-Assisted Fracture of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
    Soyoung Kim
    Masahiro Goto
    Sangshik Kim
    Metallurgical and Materials Transactions A, 2022, 53 : 211 - 224
  • [39] Effect of Powder Recycling on Environment-Assisted Fracture of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
    Kim, Soyoung
    Goto, Masahiro
    Kim, Sangshik
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2022, 53 (01): : 211 - 224
  • [40] Influence of burnishing process on surface integrity of inconel 718 fabricated by laser powder bed fusion additive manufacturing
    Kaya, Mert
    Yaman, Nihal
    Tascioglu, Emre
    Kaynak, Yusuf
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (02): : 335 - 343