Milling of Inconel 718 block supports fabricated using laser powder bed fusion

被引:17
|
作者
Tripathi, Varad [1 ]
Armstrong, Andrew [1 ]
Gong, Xi [2 ]
Manogharan, Guha [2 ]
Simpson, Timothy [1 ,2 ]
De Meter, Edward [1 ,2 ]
机构
[1] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16801 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16801 USA
关键词
Lattice structure machining; Laser powder bed fusion post processing; Inconel; 718; machining; Block support removal; FORCES;
D O I
10.1016/j.jmapro.2018.03.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is significant interest in using laser powder bed fusion (L-PBF) to print metallic parts from super-alloys such as Inconel 718. L-PBF frequently requires the printing of support structures for overhanging regions of the solid part in order to mitigate warping and distortion. After the part is printed, machining processes are often employed to remove the supports from the solid part. Surprisingly, little is known regarding the machining behavior and machinability of these support structures. In this study, the milling behavior of Inconel 718 block type supports was investigated. Standard block supports of varying height were fabricated and peripherally end milled to study deformation and fracture behavior, specific cutting energy, the influence of tooth-support wall interactions on milling forces, and tool wear. The investigation revealed that supports do not uproot from the base or generally collapse when milled. Instead, they maintain their structure and support localized chip formation, despite the fact that they are designed to break away from the base using hand tools. The specific cutting energy of milling blocks supports is 12% of that of full density metal when considered on a swept volume basis. If metal volume removal is considered, the density normalized specific cutting energy is 43% of that of full density metal. Water fall FFT analysis of the forces measured during the milling of block supports revealed stronger relative contributions at higher frequencies and greater time sensitivity than the forces measured during the milling of full density metal. These are due to tooth-support wall interactions. Finally a preliminary tool wear study showed that a TiAlN coated carbide end mill is more prone to pre-mature failure when machining block supports than fully dense metal. This failure is due to fracture at the corner radius, and is possibly due to tooth support wall interactions.
引用
收藏
页码:740 / 749
页数:10
相关论文
共 50 条
  • [1] Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion
    Qin Cheng
    Xue Yan
    [J]. Transactions of the Indian Institute of Metals, 2023, 76 : 997 - 1006
  • [2] Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion
    Cheng, Qin
    Yan, Xue
    [J]. TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (04) : 997 - 1006
  • [3] Design guidelines for laser powder bed fusion in Inconel 718
    Herzog, Dirk
    Asami, Karim
    Scholl, Christoph
    Ohle, Christoph
    Emmelmann, Claus
    Sharma, Ashish
    Markovic, Nick
    Harris, Andy
    [J]. JOURNAL OF LASER APPLICATIONS, 2022, 34 (01)
  • [4] Tribocorrosion Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion-Based Additive Manufacturing
    Siddaiah, Arpith
    Kasar, Ashish
    Kumar, Pankaj
    Akram, Javed
    Misra, Manoranjan
    Menezes, Pradeep L.
    [J]. COATINGS, 2021, 11 (02) : 1 - 9
  • [5] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sharma, Sunny
    Palaniappan, Karthik
    Mishra, Vagish D.
    Vedantam, Srikanth
    Murthy, H.
    Rao, Balkrishna C.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (01): : 270 - 285
  • [6] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sunny Sharma
    Karthik Palaniappan
    Vagish D. Mishra
    Srikanth Vedantam
    H. Murthy
    Balkrishna C. Rao
    [J]. Metallurgical and Materials Transactions A, 2023, 54 : 270 - 285
  • [7] Impact of process parameters on the dynamic behavior of Inconel 718 fabricated via laser powder bed fusion
    Abruzzo, Michele
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Romoli, Luca
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (7-8): : 3655 - 3669
  • [8] Origin of strain localization at twin boundary in Inconel 718 superalloy fabricated by laser powder bed fusion
    Li, X. C.
    Wu, Y. N.
    Yang, R.
    Zhang, Z. B.
    [J]. 42ND RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: MICROSTRUCTURAL VARIABILITY: PROCESSING, ANALYSIS, MECHANISMS AND PROPERTIES, 2022, 1249
  • [9] Evolution of dislocation cellular pattern in Inconel 718 alloy fabricated by laser powder-bed fusion
    He, Minglin
    Cao, Hailin
    Liu, Qian
    Yi, Jiang
    Ni, Yong
    Wang, Shuai
    [J]. ADDITIVE MANUFACTURING, 2022, 55
  • [10] Creep behaviour of inconel 718 processed by laser powder bed fusion
    Xu, Zhengkai
    Hyde, C. J.
    Tuck, C.
    Clare, A. T.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 256 : 13 - 24