The logarithmic Schrödinger equation with spatial white noise on the full space

被引:0
|
作者
Chauleur, Quentin [1 ,2 ]
Mouzard, Antoine [3 ,4 ]
机构
[1] Univ Lille, INRIA Lille, F-59655 Villeneuve Dascq, France
[2] CNRS, UMR 8524 Lille, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
[3] ENS Paris, CNRS, 45 Rue Ulm, F-75005 Paris, France
[4] ENS Paris, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
关键词
Logarithmic Schr & ouml; dinger equation; Multiplicative white noise; Global well-posedness; SCHRODINGER-EQUATION;
D O I
10.1007/s00028-024-01031-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the Schr & ouml;dinger equation with logarithmic nonlinearity and multiplicative spatial white noise on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document} with d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}. Because of the nonlinearity, the regularity structures and the paracontrolled calculus can not be used. To solve the equation, we rely on an exponential transform that has proved useful in the context of other singular SPDEs.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space
    Debussche, Arnaud
    Liu, Ruoyuan
    Tzvetkov, Nikolay
    Visciglia, Nicola
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (3-4) : 1161 - 1218
  • [2] Logarithmic Schr?dinger equation and isothermal fluids
    Carles, Remi
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2022, 9 (01) : 99 - 134
  • [3] Numerical analysis of the nonlinear schrödinger equation with white noise dispersion
    Belaouar R.
    de Bouard A.
    Debussche A.
    Stochastic Partial Differential Equations: Analysis and Computations, 2015, 3 (1) : 103 - 132
  • [4] Two dimensional nonlinear Schrödinger equation with spatial white noise potential and fourth order nonlinearity
    N. Tzvetkov
    N. Visciglia
    Stochastics and Partial Differential Equations: Analysis and Computations, 2023, 11 : 948 - 987
  • [5] The Cauchy Problem for the Logarithmic Schrödinger Equation Revisited
    Hayashi, Masayuki
    Ozawa, Tohru
    ANNALES HENRI POINCARE, 2024, : 1209 - 1238
  • [6] Kink Soliton Solutions in the Logarithmic Schrödinger Equation
    Scott, Tony C.
    Glasser, M. Lawrence
    MATHEMATICS, 2025, 13 (05)
  • [7] LOW REGULARITY SOLUTIONS TO THE LOGARITHMIC SCHRÖDINGER EQUATION
    Carles, Remi
    Hayashi, Masayuki
    Ozawa, Tohru
    PURE AND APPLIED ANALYSIS, 2024, 6 (03):
  • [8] Regularized numerical methods for the logarithmic Schrödinger equation
    Weizhu Bao
    Rémi Carles
    Chunmei Su
    Qinglin Tang
    Numerische Mathematik, 2019, 143 : 461 - 487
  • [9] On the Cauchy problem for logarithmic fractional Schrödinger equation
    Carles, Remi
    Dong, Fangyuan
    PORTUGALIAE MATHEMATICA, 2025, 82 (1-2) : 155 - 175
  • [10] Qualitative analysis on logarithmic Schrödinger equation with general potential
    Chengxiang Zhang
    Luyu Zhang
    Journal of Fixed Point Theory and Applications, 2022, 24