The logarithmic Schrödinger equation with spatial white noise on the full space

被引:0
|
作者
Chauleur, Quentin [1 ,2 ]
Mouzard, Antoine [3 ,4 ]
机构
[1] Univ Lille, INRIA Lille, F-59655 Villeneuve Dascq, France
[2] CNRS, UMR 8524 Lille, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
[3] ENS Paris, CNRS, 45 Rue Ulm, F-75005 Paris, France
[4] ENS Paris, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
关键词
Logarithmic Schr & ouml; dinger equation; Multiplicative white noise; Global well-posedness; SCHRODINGER-EQUATION;
D O I
10.1007/s00028-024-01031-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the Schr & ouml;dinger equation with logarithmic nonlinearity and multiplicative spatial white noise on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document} with d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}. Because of the nonlinearity, the regularity structures and the paracontrolled calculus can not be used. To solve the equation, we rely on an exponential transform that has proved useful in the context of other singular SPDEs.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Novel solitary wave solutions in a generalized derivative nonlinear Schrödinger equation with multiplicative white noise effects
    Zayed, Elsayed M. E.
    Saad, Basel M. M.
    Arnous, Ahmed H.
    Yildirim, Yakup
    NONLINEAR DYNAMICS, 2025, 113 (07) : 7139 - 7183
  • [42] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [43] The Asymptotic Behavior of the Stochastic Nonlinear Schrdinger Equation With Multiplicative Noise
    王国联
    数学进展, 2007, (05) : 637 - 639
  • [44] On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation
    A. de Bouard
    A. Debussche
    Probability Theory and Related Fields, 2002, 123 : 76 - 96
  • [45] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [46] Dirichlet problem for Schr?dinger equation with the boundary value in the BMO space
    Renjin Jiang
    Bo Li
    ScienceChina(Mathematics), 2022, 65 (07) : 1431 - 1468
  • [47] Dirichlet problem for Schrödinger equation with the boundary value in the BMO space
    Renjin Jiang
    Bo Li
    Science China Mathematics, 2022, 65 : 1431 - 1468
  • [48] Rogue waves in a reverse space nonlocal nonlinear Schrödinger equation
    Wang, Xin
    He, Jingsong
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 469
  • [49] Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space
    Zdzisław Brzeźniak
    Fabian Hornung
    Lutz Weis
    Probability Theory and Related Fields, 2019, 174 : 1273 - 1338
  • [50] Exact solutions for the quintic nonlinear Schrödinger equation with time and space
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Wenwu Deng
    Nonlinear Dynamics, 2016, 84 : 251 - 259