The logarithmic Schrödinger equation with spatial white noise on the full space

被引:0
|
作者
Chauleur, Quentin [1 ,2 ]
Mouzard, Antoine [3 ,4 ]
机构
[1] Univ Lille, INRIA Lille, F-59655 Villeneuve Dascq, France
[2] CNRS, UMR 8524 Lille, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
[3] ENS Paris, CNRS, 45 Rue Ulm, F-75005 Paris, France
[4] ENS Paris, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
关键词
Logarithmic Schr & ouml; dinger equation; Multiplicative white noise; Global well-posedness; SCHRODINGER-EQUATION;
D O I
10.1007/s00028-024-01031-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the Schr & ouml;dinger equation with logarithmic nonlinearity and multiplicative spatial white noise on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document} with d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}. Because of the nonlinearity, the regularity structures and the paracontrolled calculus can not be used. To solve the equation, we rely on an exponential transform that has proved useful in the context of other singular SPDEs.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Theory of Stochastic Schrödinger Equation in Complex Vector Space
    Kundeti Muralidhar
    Foundations of Physics, 2017, 47 : 532 - 552
  • [32] Logarithmic counterpart for semilinear Schrödinger equations
    Flank D. M. Bezerra
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [33] A generalized nonlinear Schrödinger equation with logarithmic nonlinearity and its Gaussian solitary wave
    Hosseini, K.
    Alizadeh, F.
    Hincal, E.
    Kaymakamzade, B.
    Dehingia, K.
    Osman, M. S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [34] Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential
    Claudianor O. Alves
    Chao Ji
    manuscripta mathematica, 2021, 164 : 555 - 575
  • [35] Energy-preserving RERK-FEM for the regularized logarithmic Schrödinger equation
    Yao, Changhui
    Li, Lei
    Fan, Huijun
    Zhao, Yanmin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 180 : 76 - 85
  • [36] Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method
    Claudianor O. Alves
    Chao Ji
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [37] Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges
    Conforti, Giovanni
    arXiv, 2022,
  • [38] Multi-bump solutions for the nonlinear magnetic Schrödinger equation with logarithmic nonlinearity
    Wang, Jun
    Yin, Zhaoyang
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (01) : 328 - 355
  • [39] Exponential integrators for nonlinear Schrödinger equations with white noise dispersion
    David Cohen
    Guillaume Dujardin
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 592 - 613
  • [40] Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges
    Conforti, Giovanni
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (3-4) : 1045 - 1071