Review of Hyperspectral Image Classification Based on Deep Learning

被引:0
|
作者
Liu, Yujuan [1 ]
Hao, Aoxing [1 ]
Liu, Yanda [1 ]
Liu, Chunyu [2 ]
Zhang, Zhiyong [1 ]
Cao, Yiming [1 ]
机构
[1] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; feature extraction; classification; deep learning; SPECTRAL-SPATIAL CLASSIFICATION; NETWORK;
D O I
10.1142/S021800142432001X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral Image (HSI) with its high resolution spatial and spectral information, has important applications in military, aerospace and civil applications. The classification methods have become the focus of the field as a significant research aspect of hyperspectral remote monitor engineering for earth reflexion. Because of its high dimensional nature, high relation between bands and spectral variety, traditional classification methods are difficult to achieve high precision and accuracy which limits the development of HSI classification technology. In the past years, with the fast recrudesce of deep learning engineering, its powerful feature extraction ability can remarkably ameliorate the accuracy of HSI classification, HSI classification on account of deep learning has become a feasibility study hotspot. In this paper, the methods of HSI classification on account of deep learning are reviewed. First, the research background of HSI classification is introduced and the deep neural network models which are expensively used in the field of HSI classification are summarized. On this basis, some HSI classification methods on account of deep learning are introduced in detail. Finally, the breakthrough aspects of deep learning in the map of HSI classification are summarized at the current stage and the future research direction is prospected.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Research on hyperspectral image classification method based on deep learning
    Zhang, Bin
    Liu, Liang
    Li, Xiao-Jie
    Zhou, Wei
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2023, 42 (06) : 825 - 833
  • [2] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [3] Deep Learning for Hyperspectral Image Classification: An Overview
    Li, Shutao
    Song, Weiwei
    Fang, Leyuan
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6690 - 6709
  • [4] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897
  • [5] Deep transfer learning for Hyperspectral Image classification
    Lin, Jianzhe
    Ward, Rabab
    Wang, Z. Jane
    2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [6] Hyperspectral Image Classification With Deep Learning Models
    Yang, Xiaofei
    Ye, Yunming
    Li, Xutao
    Lau, Raymond Y. K.
    Zhang, Xiaofeng
    Huang, Xiaohui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5408 - 5423
  • [7] Deep learning for hyperspectral image classification: A survey
    Kumar, Vinod
    Singh, Ravi Shankar
    Rambabu, Medara
    Dua, Yaman
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [8] Classification of Hyperspectral Image Based on Principal Component Analysis and Deep Learning
    Sun, Qiaoqiao
    Liu, Xuefeng
    Fu, Min
    PROCEEDINGS OF 2017 IEEE 7TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2017, : 356 - 359
  • [9] HYPER-VOXEL BASED DEEP LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Mughees, Atif
    Tao, Linmi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 840 - 844
  • [10] A novel hyperspectral image classification iteration method based on deep learning
    Liu, Qian
    Jin, Peiyang
    Zhu, Botao
    Mao, Keming
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND INTELLIGENT CONTROL (IPIC 2021), 2021, 11928