Review of Hyperspectral Image Classification Based on Deep Learning

被引:0
|
作者
Liu, Yujuan [1 ]
Hao, Aoxing [1 ]
Liu, Yanda [1 ]
Liu, Chunyu [2 ]
Zhang, Zhiyong [1 ]
Cao, Yiming [1 ]
机构
[1] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; feature extraction; classification; deep learning; SPECTRAL-SPATIAL CLASSIFICATION; NETWORK;
D O I
10.1142/S021800142432001X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral Image (HSI) with its high resolution spatial and spectral information, has important applications in military, aerospace and civil applications. The classification methods have become the focus of the field as a significant research aspect of hyperspectral remote monitor engineering for earth reflexion. Because of its high dimensional nature, high relation between bands and spectral variety, traditional classification methods are difficult to achieve high precision and accuracy which limits the development of HSI classification technology. In the past years, with the fast recrudesce of deep learning engineering, its powerful feature extraction ability can remarkably ameliorate the accuracy of HSI classification, HSI classification on account of deep learning has become a feasibility study hotspot. In this paper, the methods of HSI classification on account of deep learning are reviewed. First, the research background of HSI classification is introduced and the deep neural network models which are expensively used in the field of HSI classification are summarized. On this basis, some HSI classification methods on account of deep learning are introduced in detail. Finally, the breakthrough aspects of deep learning in the map of HSI classification are summarized at the current stage and the future research direction is prospected.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Discriminative Robust Deep Dictionary Learning for Hyperspectral Image Classification
    Singhal, Vanika
    Aggarwal, Hemant K.
    Tariyal, Snigdha
    Majumdar, Angshul
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 5274 - 5283
  • [32] Statistical Loss and Analysis for Deep Learning in Hyperspectral Image Classification
    Gong, Zhiqiang
    Zhong, Ping
    Hu, Weidong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 322 - 333
  • [33] Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification
    Mou, Lichao
    Saha, Sudipan
    Hua, Yuansheng
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Deep Intrinsic Decomposition With Adversarial Learning for Hyperspectral Image Classification
    Gong, Zhiqiang
    Qi, Jiahao
    Zhong, Ping
    Zhou, Xian
    Yao, Wen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [35] Hyperspectral Image Classification via Deep Structure Dictionary Learning
    Wang, Wenzheng
    Han, Yuqi
    Deng, Chenwei
    Li, Zhen
    REMOTE SENSING, 2022, 14 (09)
  • [36] Bayesian Deep Learning for Hyperspectral Image Classification With Low Uncertainty
    He, Xin
    Chen, Yushi
    Huang, Lingbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [37] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [38] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [39] Combining Unmixing and Deep Feature Learning for Hyperspectral Image Classification
    Alam, Fahim Irfan
    Zhou, Jun
    Tong, Lei
    Liew, Alan Wee-Chung
    Gao, Yongsheng
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 733 - 740
  • [40] Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification
    Zhong, Ping
    Gong, Zhiqiang
    Li, Shutao
    Schoenlieb, Carola-Bibiane
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (06): : 3516 - 3530