Review of Hyperspectral Image Classification Based on Deep Learning

被引:0
|
作者
Liu, Yujuan [1 ]
Hao, Aoxing [1 ]
Liu, Yanda [1 ]
Liu, Chunyu [2 ]
Zhang, Zhiyong [1 ]
Cao, Yiming [1 ]
机构
[1] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; feature extraction; classification; deep learning; SPECTRAL-SPATIAL CLASSIFICATION; NETWORK;
D O I
10.1142/S021800142432001X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral Image (HSI) with its high resolution spatial and spectral information, has important applications in military, aerospace and civil applications. The classification methods have become the focus of the field as a significant research aspect of hyperspectral remote monitor engineering for earth reflexion. Because of its high dimensional nature, high relation between bands and spectral variety, traditional classification methods are difficult to achieve high precision and accuracy which limits the development of HSI classification technology. In the past years, with the fast recrudesce of deep learning engineering, its powerful feature extraction ability can remarkably ameliorate the accuracy of HSI classification, HSI classification on account of deep learning has become a feasibility study hotspot. In this paper, the methods of HSI classification on account of deep learning are reviewed. First, the research background of HSI classification is introduced and the deep neural network models which are expensively used in the field of HSI classification are summarized. On this basis, some HSI classification methods on account of deep learning are introduced in detail. Finally, the breakthrough aspects of deep learning in the map of HSI classification are summarized at the current stage and the future research direction is prospected.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning
    Wang, Xue
    Tan, Kun
    Pan, Cen
    Ding, Jianwei
    Liu, Zhaoxian
    Han, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] Information Leakage in Deep Learning-Based Hyperspectral Image Classification: A Survey
    Feng, Hao
    Wang, Yongcheng
    Li, Zheng
    Zhang, Ning
    Zhang, Yuxi
    Gao, Yunxiao
    REMOTE SENSING, 2023, 15 (15)
  • [23] Hyperspectral Image Classification Using Spatial and Edge Features Based on Deep Learning
    Zhang, Dexiang
    Kang, Jingzhong
    Xun, Lina
    Huang, Yu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (09)
  • [24] An Intelligent Deep Learning Based Xception Model for Hyperspectral Image Analysis and Classification
    Banumathi, J.
    Muthumari, A.
    Dhanasekaran, S.
    Rajasekaran, S.
    Pustokhina, Irina, V
    Pustokhin, Denis A.
    Shankar, K.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 2393 - 2407
  • [25] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [26] Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification
    Deng, Bin
    Jia, Sen
    Shi, Daming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 1422 - 1435
  • [27] DEEP ENSEMBLE LEARNING FOR LAND COVER CLASSIFICATION BASED ON HYPERSPECTRAL PRISMA IMAGE
    Kalantar, Bahareh
    Seydi, Seyd Teymoor
    Ueda, Naonori
    Saeidi, Vahideh
    Halin, Alfian Abdul
    Shabani, Farzin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3612 - 3615
  • [28] Multiple Kernel Learning for Hyperspectral Image Classification: A Review
    Gu, Yanfeng
    Chanussot, Jocelyn
    Jia, Xiuping
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6547 - 6565
  • [29] Active Learning for Hyperspectral Image Classification: A Comparative Review
    Thoreau, Romain
    Achard, Veronique
    Risser, Laurent
    Berthelot, Beatrice
    Briottet, Xavier
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (03) : 256 - 278
  • [30] Review of Image Classification Method Based on Deep Transfer Learning
    Li, Chuanzi
    Feng, Jining
    Hu, Li
    Li, Junhong
    Ma, Haibin
    2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 104 - 108