Deep Multiview Learning for Hyperspectral Image Classification

被引:83
|
作者
Liu, Bing [1 ]
Yu, Anzhu [1 ]
Yu, Xuchu [1 ]
Wang, Ruirui [2 ]
Gao, Kuiliang [1 ]
Guo, Wenyue [1 ]
机构
[1] PLA Strateg Support Force Informat Engn Univ, Zhengzhou 450001, Peoples R China
[2] Inst Surveying Mapping & Geo Informat Henan, Zhengzhou 450006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Training; Support vector machines; Radio frequency; Deep learning; Task analysis; Unsupervised learning; Residual neural networks; hyperspectral image (HSI) classification; multiview learning; small samples; SPECTRAL-SPATIAL CLASSIFICATION; FEATURE-EXTRACTION; RANDOM FOREST; CLASSIFIERS;
D O I
10.1109/TGRS.2020.3034133
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, the field of hyperspectral image (HSI) classification is dominated by deep learning-based methods. However, training deep learning models usually needs a large number of labeled samples to optimize thousands of parameters. In this article, a deep multiview learning method is proposed to deal with the small sample problem of HSI. First, two views of an HSI scene are constructed by applying principal component analysis to different bands. Second, a deep residual network is designed to embed the different views of a sample to a latent space. The designed deep residual network is trained by maximizing agreement between differently augmented views of the same data sample via a contrastive loss in the latent space. Note that the training procedure of the designed deep residual network does not use labeled information. Therefore, the proposed method belongs to the category of unsupervised learning, which could alleviate the lack of labeled training samples. Finally, a conventional machine learning method (e.g., support vector machine) is used to complete the classification task in the learned latent space. To demonstrate the effectiveness of the proposed method, extensive experiments are carried on four widely used hyperspectral data sets. The experimental results demonstrate that the proposed method could improve the classification accuracy with small samples.
引用
收藏
页码:7758 / 7772
页数:15
相关论文
共 50 条
  • [1] Multiview Spatial-Spectral Active Learning for Hyperspectral Image Classification
    Xu, Meng
    Zhao, Qingqing
    Jia, Sen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Multiview Intensity-Based Active Learning for Hyperspectral Image Classification
    Xu, Xiang
    Li, Jun
    Li, Shutao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 669 - 680
  • [3] Unsupervised Multiview Graph Contrastive Feature Learning for Hyperspectral Image Classification
    Chang, Yuan
    Liu, Quanwei
    Zhang, Yuxiang
    Dong, Yanni
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [4] A Unified Multiview Spectral Feature Learning Framework for Hyperspectral Image Classification
    Li, Xian
    Gu, Yanfeng
    Pizurica, Aleksandra
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897
  • [6] Deep Learning for Hyperspectral Image Classification: An Overview
    Li, Shutao
    Song, Weiwei
    Fang, Leyuan
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6690 - 6709
  • [7] Deep transfer learning for Hyperspectral Image classification
    Lin, Jianzhe
    Ward, Rabab
    Wang, Z. Jane
    [J]. 2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [8] Hyperspectral Image Classification With Deep Learning Models
    Yang, Xiaofei
    Ye, Yunming
    Li, Xutao
    Lau, Raymond Y. K.
    Zhang, Xiaofeng
    Huang, Xiaohui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5408 - 5423
  • [9] Deep learning for hyperspectral image classification: A survey
    Kumar, Vinod
    Singh, Ravi Shankar
    Rambabu, Medara
    Dua, Yaman
    [J]. COMPUTER SCIENCE REVIEW, 2024, 53
  • [10] Deep Multiview Union Learning Network for Multisource Image Classification
    Liu, Xu
    Jiao, Licheng
    Li, Lingling
    Cheng, Lin
    Liu, Fang
    Yang, Shuyuan
    Hou, Biao
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4534 - 4546