Unsupervised Multiview Graph Contrastive Feature Learning for Hyperspectral Image Classification

被引:0
|
作者
Chang, Yuan [1 ,2 ]
Liu, Quanwei [3 ]
Zhang, Yuxiang [4 ]
Dong, Yanni [2 ]
机构
[1] China Univ Geosci, Sch Geophys & Geomatics, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
[3] JamesCook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia
[4] China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Classification algorithms; Data augmentation; Hyperspectral imaging; Representation learning; Iron; Contrastive learning (CL); graph convolutional network (GCN); hyperspectral image (HIS) classification; unsupervised feature learning;
D O I
10.1109/TGRS.2024.3431680
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As a popular deep learning (DL) algorithm, graph neural network (GNN) has been widely used in hyperspectral image (HIS) classification. However, most of the GNN-based classification algorithms are concentrated in the field of semisupervision, which heavily relies on the quantity and quality of samples. To solve this problem, we propose an unsupervised multiview graph contrastive (UMGC) feature learning algorithm to explore the deep semantic features of HSIs without being constrained by samples. First, we construct multiview adjacency matrixes from spatial and spectral directions. Second, the adaptive data augmentation method is used to selectively enhance the topology and attribute structure of the graph. Thereafter, features are extracted by using a contrastive loss to maximize the similarity between the two views. Finally, we tested the model's performance based on multiple evaluation methods. Experimental results on three publicly available hyperspectral datasets show that the proposed UMGC can have better classification performance compared with other state-of-the-art unsupervised feature extraction (FE) methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Boosting Hyperspectral Image Classification With Unsupervised Feature Learning
    Wei, Wei
    Xu, Songzheng
    Zhang, Lei
    Zhang, Jinyang
    Zhang, Yanning
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] ContrastNet: Unsupervised feature learning by autoencoder and prototypical contrastive learning for hyperspectral imagery classification
    Cao, Zeyu
    Li, Xiaorun
    Feng, Yueming
    Chen, Shuhan
    Xia, Chaoqun
    Zhao, Liaoying
    [J]. NEUROCOMPUTING, 2021, 460 : 71 - 83
  • [3] A Unified Multiview Spectral Feature Learning Framework for Hyperspectral Image Classification
    Li, Xian
    Gu, Yanfeng
    Pizurica, Aleksandra
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Unsupervised Meta Learning With Multiview Constraints for Hyperspectral Image Small Sample set Classification
    Gao, Kuiliang
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3449 - 3462
  • [5] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [6] Unsupervised spectral sub-feature learning for hyperspectral image classification
    Slavkovikj, Viktor
    Verstockt, Steven
    De Neve, Wesley
    Van Hoecke, Sofie
    Van de Walle, Rik
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (02) : 309 - 326
  • [7] Hyperspectral image classification with unsupervised feature extraction
    Sun, Qiaoqiao
    Bourennane, Salah
    [J]. REMOTE SENSING LETTERS, 2020, 11 (05) : 475 - 484
  • [8] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Enhancing Hyperspectral Image Classification: Leveraging Unsupervised Information With Guided Group Contrastive Learning
    Li, Ben
    Fang, Leyuan
    Chen, Ning
    Kang, Jitong
    Yue, Jun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [10] Supervised Contrastive Learning-Based Unsupervised Domain Adaptation for Hyperspectral Image Classification
    Li, Zhaokui
    Xu, Qiang
    Ma, Li
    Fang, Zhuoqun
    Wang, Yan
    He, Wenqiang
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61