Bandwidth-Scalable Digital Predistortion Using Multigroup Aggregation Neural Network for PAs

被引:0
|
作者
Tang, Yijie [1 ]
Peng, Jun [1 ]
He, Songbai [1 ]
You, Fei [1 ]
Wang, Xinyu [1 ]
Zhong, Tianyang [1 ]
Bian, Yuchen [1 ]
Pang, Bo [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci Engn, Chengdu 611731, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bandwidth; Artificial neural networks; Accuracy; Vectors; Adaptation models; Indexes; Predistortion; Wireless communication; Polynomials; Data models; Bandwidth-scalable; digital predistortion (DPD); neural network (NN); power amplifiers (PAs);
D O I
10.1109/LMWT.2024.3464849
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multigroup aggregation neural network (MGANN) model for bandwidth-scalable digital predistortion (DPD) is proposed. The MGANN model introduces a multinetwork structure based on the characteristics of neural networks (NNs) to broaden the bandwidth application range and eliminate the updates online. The proposed structure combines the input layer and the first hidden layer into multiple networks retrieved by means of inertia coefficients. In addition, to improve modeling accuracy, a new input vector is used by introducing the product term of I/Q components and the amplitude of the signal. The experimental results indicate that the proposed model can significantly improve the adjacent channel power ratio (ACPR) within the range of 20-200M with an average of 12.1 dB compared with traditional GMP models when using a fixed set of parameters.
引用
收藏
页码:1387 / 1390
页数:4
相关论文
共 50 条
  • [1] Bandwidth-Scalable Digital Predistortion of Active Phased Array Using Transfer Learning Neural Network
    Jalili, Feridoon
    Tafuri, Felice Francesco
    Jensen, Ole Kiel
    Chen, Qingyue
    Shen, Ming
    Pedersen, Gert F.
    IEEE ACCESS, 2023, 11 : 13877 - 13888
  • [2] Power Scalable Neural Network Model for Wideband Digital Predistortion
    Li, Shulan
    Zhao, Guobo
    Yu, Cuiping
    Li, Feifei
    Liu, Yuanan
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (12): : 1658 - 1661
  • [3] DYNAMIC PROVISIONING SYSTEM FOR BANDWIDTH-SCALABLE CORE OPTICAL NETWORK
    Rauschenbach, Kristin
    Hain, Regina
    Jackson, Alden
    Jacob, John
    Leland, Will
    Lowry, John
    Milliken, Walter
    Pal, Partha
    Ramanathan, Ram
    Santivanez, Cesar
    Baldine, Ilia
    Huang, Shu
    Wood, Dan
    MILCOM 2009 - 2009 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-4, 2009, : 2639 - +
  • [4] Efficient Digital Predistortion Using Sparse Neural Network
    Tanio, Masaaki
    Ishii, Naoto
    Kamiya, Norifumi
    IEEE ACCESS, 2020, 8 (08): : 117841 - 117852
  • [5] A Uniform Neural Network Digital Predistortion Model of RF Power Amplifiers for Scalable Applications
    Wu, Huibo
    Chen, Wenhua
    Liu, Xin
    Feng, Zhenghe
    Ghannouchi, Fadhel M.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) : 4885 - 4899
  • [6] Neural network predistortion technique for digital satellite communications
    Ibnkahla, M
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3506 - 3509
  • [7] Digital Predistortion using Direct Learning with Reduced Bandwidth Feedback
    Ding, Lei
    Mujica, Fernando
    Yang, Zigang
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,
  • [8] The Research of Adaptive Digital Predistortion Based on SISO-Neural Network
    Qiu Wei
    Zhong Zhi-ming
    Ren Guo-chun
    Xu Yi-tao
    2009 WRI INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND MOBILE COMPUTING: CMC 2009, VOL I, 2009, : 451 - 456
  • [9] A Neural network approach to data predistortion with memory in digital radio systems
    Benvenuto, N.
    Piazza, F.
    Uncini, A.
    Proceedings of the 1993 IEEE International Conference on Communications, 1993, : 232 - 236
  • [10] On scalable network resource management using bandwidth brokers
    Zhang, ZL
    Duan, ZH
    Hou, YT
    NOMS 2002: IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM: MANAGEMENT SOLUTIONS FOR THE NEW COMMUNICATIONS WORLD, 2002, : 169 - 183