Bandwidth-Scalable Digital Predistortion Using Multigroup Aggregation Neural Network for PAs

被引:0
|
作者
Tang, Yijie [1 ]
Peng, Jun [1 ]
He, Songbai [1 ]
You, Fei [1 ]
Wang, Xinyu [1 ]
Zhong, Tianyang [1 ]
Bian, Yuchen [1 ]
Pang, Bo [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci Engn, Chengdu 611731, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bandwidth; Artificial neural networks; Accuracy; Vectors; Adaptation models; Indexes; Predistortion; Wireless communication; Polynomials; Data models; Bandwidth-scalable; digital predistortion (DPD); neural network (NN); power amplifiers (PAs);
D O I
10.1109/LMWT.2024.3464849
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multigroup aggregation neural network (MGANN) model for bandwidth-scalable digital predistortion (DPD) is proposed. The MGANN model introduces a multinetwork structure based on the characteristics of neural networks (NNs) to broaden the bandwidth application range and eliminate the updates online. The proposed structure combines the input layer and the first hidden layer into multiple networks retrieved by means of inertia coefficients. In addition, to improve modeling accuracy, a new input vector is used by introducing the product term of I/Q components and the amplitude of the signal. The experimental results indicate that the proposed model can significantly improve the adjacent channel power ratio (ACPR) within the range of 20-200M with an average of 12.1 dB compared with traditional GMP models when using a fixed set of parameters.
引用
收藏
页码:1387 / 1390
页数:4
相关论文
共 50 条
  • [31] Distributed Spatiotemporal Neural Network for Nonlinear Dynamic Transmitter Modeling and Adaptive Digital Predistortion
    Rawat, Meenakshi
    Ghannouchi, Fadhel M.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (03) : 595 - 608
  • [32] Block-Oriented Recurrent Neural Network for Digital Predistortion of RF Power Amplifiers
    Zhang, Qianqian
    Jiang, Chengye
    Yang, Guichen
    Han, Renlong
    Liu, Falin
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (07) : 3875 - 3885
  • [33] Digital predistortion method combining memory polynomial and feed-forward neural network
    Feng, X.
    Feuvrie, B.
    Descamps, A. S.
    Wang, Y.
    ELECTRONICS LETTERS, 2015, 51 (12) : 943 - 944
  • [34] Application of the NARX neural network as a digital predistortion technique for linearizing microwave power amplifiers
    Centro de Investigaciõn y Estudios Avanzados Del I. P. N. Unidad Guadalajara, Av. Del Bosque 1145, Col.-El Bajío, C. P. Zapopan, Jalisco
    45015, Mexico
    不详
    45604, Mexico
    不详
    22860, Mexico
    Microwave Opt Technol Lett, 9 (2137-2142):
  • [35] A New Digital Predistortion Using Indirect Learning with Constrained Feedback Bandwidth for Wideband Power Amplifiers
    Liu, Ying
    Pan, Wensheng
    Shao, Shihai
    Tang, Youxi
    2014 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2014,
  • [36] Wide Bandwidth Adaptive Digital Predistortion of Power Amplifiers Using Reduced Order Memory Correction
    Braithwaite, R. Neil
    2008 IEEE MTT-S International Microwave Symposium Digest, Vols 1-4, 2008, : 1524 - 1527
  • [37] Using recurrent neural network for adaptive predistortion linearization of RF amplifiers
    Li, CG
    He, SB
    Liao, XF
    Yu, JB
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2002, 12 (01) : 125 - 130
  • [38] Low Computational Complexity Digital Predistortion Based on Convolutional Neural Network for Wideband Power Amplifiers
    Liu, Zhijun
    Hu, Xin
    Xu, Lexi
    Wang, Weidong
    Ghannouchi, Fadhel M.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1702 - 1706
  • [39] Segmented Spline Curve Neural Network for Low Latency Digital Predistortion of RF Power Amplifiers
    Vaicaitis, Andrius
    Dooley, John
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) : 4910 - 4915
  • [40] Neural-Network-Based Digital Predistortion for Active Antenna Arrays Under Load Modulation
    Brihuega, Alberto
    Anttila, Lauri
    Valkama, Mikko
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (08) : 843 - 846