Estimating Axial Bearing Capacity of Driven Piles Using Tuned Random Forest Frameworks

被引:0
|
作者
Yaychi, Belal Mohammadi [1 ]
Esmaeili-Falak, Mahzad [2 ]
机构
[1] Department of Civil Engineering, Moghadas Ardabili Institute of Higher Education, Ardabil, Iran
[2] Department of Civil Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
关键词
The authors have not disclosed any funding;
D O I
10.1007/s10706-024-02952-9
中图分类号
学科分类号
摘要
In the process of designing pile foundations, it is essential to take the axial bearing capacity (Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document}) of the pile into consideration., where determination of this target requires extreme fields and experimental efforts along with its cost. The primary objective of this study was to investigate the possibility of using tree-based approaches in order to estimate the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. The goal of building Random Forests (RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}) models is to produce a strong and adaptable machine learning method that is capable of reliably and accurately completing tasks related to classification as well as regression. Enhanced precision in predicting feature significance, scalability, adaptability, and managing missing data are the main objectives of employing RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}. The accuracy of this model is very dependent on its hyperparameters, which are linked to the Coati optimizer (CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO$$\end{document}) and Giant trevally optimizer (GTO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GTO$$\end{document}) procedures (also called RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document}) in order to find the optimal combinations. In a database, there were 472 driven pile static load test results collected from previous papers. Specifically, the construction, validation, and testing phases of the proposed framework were carried out using the learning set (70%), validation set (15%), and evaluating set (15%) of the dataset. Moreover, the feature importance analysis is designed to assess the impact of each input variable on the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} offer promising Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} forecasting capabilities, where the RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} approach outperformed the RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} method in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} values, with values of 0.9876, 0.9781, and 0.9873.
引用
收藏
页码:7813 / 7834
页数:21
相关论文
共 50 条
  • [41] Reliability prediction of the axial ultimate bearing capacity of piles: A hierarchical Bayesian method
    Lu, Shengliang
    Zhang, Jie
    Zhou, Shirong
    Xu, Ancha
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (11):
  • [42] Prediction of Ultimate Axial Load-carrying Capacity for Driven Piles using Machine Learning Methods
    Liu, Qiuxia
    Cao, Yadong
    Wang, Changhong
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 334 - 340
  • [43] CPT-Based Axial Capacity Design Method for Driven Piles in Clay
    Lehane, Barry M.
    Liu, Zhongqiang
    Bittar, Eduardo J.
    Nadim, Farrokh
    Lacasse, Suzanne
    Bozorgzadeh, Nezam
    Jardine, Richard
    Ballard, Jean-Christophe
    Carotenuto, Pasquale
    Gavin, Kenneth
    Gilbert, Robert B.
    Bergan-Haavik, Jens
    Jeanjean, Philippe
    Morgan, Neil
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2022, 148 (09)
  • [44] Use of the piezocone test to predict the axial capacity of driven and jacked piles in clay
    Almeida, Marcio S.S.
    Danziger, Fernando A.B.
    Lunne, Tom
    Canadian Geotechnical Journal, 33 (01): : 23 - 41
  • [45] The Axial Capacity of Closed-Ended Pipe Piles Driven in Gravelly Sands
    Ganju, Eshan
    Han, Fei
    Prezzi, Monica
    Salgado, Rodrigo
    IFCEE 2021: INSTALLATION, TESTING, AND ANALYSIS OF DEEP FOUNDATIONS, 2021, 323 : 377 - 387
  • [46] Use of the piezocone test to predict the axial capacity of driven and jacked piles in clay
    Almeida, MSS
    Danziger, FAB
    Lunne, T
    CANADIAN GEOTECHNICAL JOURNAL, 1996, 33 (01) : 23 - 41
  • [47] Axial capacity ageing trends of large diameter tubular piles driven in sand
    Cathie, D.
    Jardine, R.
    Silvano, R.
    Kontoe, S.
    Schroeder, F.
    SOILS AND FOUNDATIONS, 2023, 63 (06)
  • [48] IMPROVING METHODS OF DETERMINING THE BEARING CAPACITY OF DRIVEN PILES USING A STANDARD PILE AND STATIC PENETRATION.
    Mariupol'skii, L.G.
    Rostovtsev, A.V.
    Trofimenkov, Yu.G.
    Leshin, G.M.
    Soil Mechanics and Foundation Engineering, 1986, 23 (05) : 191 - 195
  • [49] End-bearing capacity of driven piles in sand using the stress characteristics method: analysis and implementation
    Veiskarami, Mehdi
    Eslami, Abolfazl
    Kumar, Jyant
    CANADIAN GEOTECHNICAL JOURNAL, 2011, 48 (10) : 1570 - 1586
  • [50] A New Approach for Estimating Capacity of Driven Piles in Sand under Tensile Loading
    Alawneh, Ahmed
    Nusier, Osama
    Atiyeh, Mais
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2019, 13 (03) : 412 - 430