Estimating Axial Bearing Capacity of Driven Piles Using Tuned Random Forest Frameworks

被引:0
|
作者
Yaychi, Belal Mohammadi [1 ]
Esmaeili-Falak, Mahzad [2 ]
机构
[1] Department of Civil Engineering, Moghadas Ardabili Institute of Higher Education, Ardabil, Iran
[2] Department of Civil Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
关键词
The authors have not disclosed any funding;
D O I
10.1007/s10706-024-02952-9
中图分类号
学科分类号
摘要
In the process of designing pile foundations, it is essential to take the axial bearing capacity (Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document}) of the pile into consideration., where determination of this target requires extreme fields and experimental efforts along with its cost. The primary objective of this study was to investigate the possibility of using tree-based approaches in order to estimate the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. The goal of building Random Forests (RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}) models is to produce a strong and adaptable machine learning method that is capable of reliably and accurately completing tasks related to classification as well as regression. Enhanced precision in predicting feature significance, scalability, adaptability, and managing missing data are the main objectives of employing RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}. The accuracy of this model is very dependent on its hyperparameters, which are linked to the Coati optimizer (CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO$$\end{document}) and Giant trevally optimizer (GTO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GTO$$\end{document}) procedures (also called RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document}) in order to find the optimal combinations. In a database, there were 472 driven pile static load test results collected from previous papers. Specifically, the construction, validation, and testing phases of the proposed framework were carried out using the learning set (70%), validation set (15%), and evaluating set (15%) of the dataset. Moreover, the feature importance analysis is designed to assess the impact of each input variable on the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} offer promising Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} forecasting capabilities, where the RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} approach outperformed the RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} method in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} values, with values of 0.9876, 0.9781, and 0.9873.
引用
收藏
页码:7813 / 7834
页数:21
相关论文
共 50 条
  • [21] Axial Response and Bearing Capacity of Tapered Piles in Sandy Soil
    Paik, Kyuho
    Lee, Junhwan
    Kim, Daehong
    GEOTECHNICAL TESTING JOURNAL, 2011, 34 (02): : 122 - 130
  • [22] New method for predicting the ultimate bearing capacity of driven piles by using Flap number
    Milad, Fatehnia
    Kamal, Tawfiq
    Nader, Hataf
    Erman, Ozguven Eren
    KSCE JOURNAL OF CIVIL ENGINEERING, 2015, 19 (03) : 611 - 620
  • [23] Forecasting the Bearing Capacity of the Driven Piles Using Advanced Machine-Learning Techniques
    Benbouras, Mohammed Amin
    Petrisor, Alexandru-Ionut
    Zedira, Hamma
    Ghelani, Laala
    Lefilef, Lina
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [24] New method for predicting the ultimate bearing capacity of driven piles by using Flap number
    Fatehnia Milad
    Tawfiq Kamal
    Hataf Nader
    Ozguven Eren Erman
    KSCE Journal of Civil Engineering, 2015, 19 : 611 - 620
  • [25] Bearing Capacity of Driven Piles Supported on Slightly Compressible Soils
    A. M. Dzagov
    D. E. Razvodovskii
    Soil Mechanics and Foundation Engineering, 2013, 50 : 187 - 193
  • [26] Bearing capacity of model piles driven into dense overconsolidated sands
    Foray, P
    Balachowski, L
    Colliat, JL
    CANADIAN GEOTECHNICAL JOURNAL, 1998, 35 (02) : 374 - 385
  • [27] Bearing Capacity of Driven Piles Supported on Slightly Compressible Soils
    Dzagov, A. M.
    Razvodovskii, D. E.
    SOIL MECHANICS AND FOUNDATION ENGINEERING, 2013, 50 (05) : 187 - 193
  • [28] Axial bearing capacity of socketed single cast-in-place piles
    Akguner, Cem
    Kirkit, Mustafa
    SOILS AND FOUNDATIONS, 2012, 52 (01) : 59 - 68
  • [29] Reliability of different methods in estimating bearing capacity and stiffness of single piles
    Ahmad, AR
    Madiai, C
    Vannucchi, G
    BGA INTERNATIONAL CONFERENCE ON FOUNDATIONS: INNOVATIONS, OBSERVATIONS, DESIGN AND PRACTICE, 2003, : 71 - 79
  • [30] Estimating carrying capacity for juvenile salmon using quantile random forest models
    See, Kevin E.
    Ackerman, Michael W.
    Carmichael, Richard A.
    Hoffmann, Sarah L.
    Beasley, Chris
    ECOSPHERE, 2021, 12 (03):