Estimating Axial Bearing Capacity of Driven Piles Using Tuned Random Forest Frameworks

被引:0
|
作者
Yaychi, Belal Mohammadi [1 ]
Esmaeili-Falak, Mahzad [2 ]
机构
[1] Department of Civil Engineering, Moghadas Ardabili Institute of Higher Education, Ardabil, Iran
[2] Department of Civil Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
关键词
The authors have not disclosed any funding;
D O I
10.1007/s10706-024-02952-9
中图分类号
学科分类号
摘要
In the process of designing pile foundations, it is essential to take the axial bearing capacity (Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document}) of the pile into consideration., where determination of this target requires extreme fields and experimental efforts along with its cost. The primary objective of this study was to investigate the possibility of using tree-based approaches in order to estimate the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. The goal of building Random Forests (RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}) models is to produce a strong and adaptable machine learning method that is capable of reliably and accurately completing tasks related to classification as well as regression. Enhanced precision in predicting feature significance, scalability, adaptability, and managing missing data are the main objectives of employing RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}. The accuracy of this model is very dependent on its hyperparameters, which are linked to the Coati optimizer (CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO$$\end{document}) and Giant trevally optimizer (GTO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GTO$$\end{document}) procedures (also called RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document}) in order to find the optimal combinations. In a database, there were 472 driven pile static load test results collected from previous papers. Specifically, the construction, validation, and testing phases of the proposed framework were carried out using the learning set (70%), validation set (15%), and evaluating set (15%) of the dataset. Moreover, the feature importance analysis is designed to assess the impact of each input variable on the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} offer promising Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} forecasting capabilities, where the RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} approach outperformed the RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} method in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} values, with values of 0.9876, 0.9781, and 0.9873.
引用
收藏
页码:7813 / 7834
页数:21
相关论文
共 50 条
  • [31] Modeling and sensitivity analysis of bearing capacity in driven piles using hybrid ANN–PSO algorithm
    Mohammad Ali Arjomand
    Yashar Mostafaei
    Saman Soleimani Kutanaei
    Arabian Journal of Geosciences, 2022, 15 (3)
  • [32] Evaluation of Direct CPT Methods for Estimating the Ultimate Capacity of Driven Piles
    Amirmojahedi, Mohsen
    Abu-Farsakh, Murad
    GEOTECHNICAL ENGINEERING IN THE XXI CENTURY: LESSONS LEARNED AND FUTURE CHALLENGES, 2019, : 867 - 878
  • [33] Applicability of the SPT-based Methods for Estimating Toe Bearing Capacity of Driven PHC Piles in the Thick Deltaic Deposits
    Dung, N. T.
    Chung, S. G.
    Kim, S. R.
    Beak, S. H.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2011, 15 (06) : 1023 - 1031
  • [34] Applicability of the SPT-based methods for estimating toe bearing capacity of driven PHC piles in the thick deltaic deposits
    N. T. Dung
    S. G. Chung
    S. R. Kim
    S. H. Beak
    KSCE Journal of Civil Engineering, 2011, 15 : 1023 - 1031
  • [35] Prediction of Bearing Capacity of Driven Piles in Semi-Rocky Soils
    Ponomarev, A. B.
    Akbulyakova, E. N.
    Ofrichter, Y. V.
    SOIL MECHANICS AND FOUNDATION ENGINEERING, 2020, 57 (02) : 133 - 138
  • [36] DRIVING RESISTANCE AND BEARING CAPACITY OF VIBRO-DRIVEN MODEL PILES
    SCHMID, WE
    MATERIALS RESEARCH AND STANDARDS, 1968, 8 (05): : 52 - &
  • [37] Prediction of axial bearing capacity of piles by SPT and PMT-based approach
    Zhussupbekov, A. Zh
    Omarov, A. R.
    Kaliakin, V. N.
    GEOTECHNICS FUNDAMENTALS AND APPLICATIONS IN CONSTRUCTION: NEW MATERIALS, STRUCTURES, TECHNOLOGIES AND CALCULATIONS, 2019, 2 : 435 - 440
  • [38] Bearing capacity of shaft-expanded driven model piles in sand
    Ergun, MU
    Akbulut, H
    GEOTECHNIQUE, 1995, 45 (04): : 715 - 718
  • [39] Time-dependent evolution of bearing capacity of driven piles in clays
    Cui, Jifei
    Rao, Pingping
    Li, Jingpei
    Chen, Qingsheng
    Nimbalkar, Sanjay
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-GEOTECHNICAL ENGINEERING, 2022, 176 (04) : 402 - 418
  • [40] Prediction of Bearing Capacity of Driven Piles in Semi-Rocky Soils
    A. B. Ponomarev
    E. N. Akbulyakova
    Y. V. Ofrichter
    Soil Mechanics and Foundation Engineering, 2020, 57 : 133 - 138