Estimating Axial Bearing Capacity of Driven Piles Using Tuned Random Forest Frameworks

被引:0
|
作者
Yaychi, Belal Mohammadi [1 ]
Esmaeili-Falak, Mahzad [2 ]
机构
[1] Department of Civil Engineering, Moghadas Ardabili Institute of Higher Education, Ardabil, Iran
[2] Department of Civil Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
关键词
The authors have not disclosed any funding;
D O I
10.1007/s10706-024-02952-9
中图分类号
学科分类号
摘要
In the process of designing pile foundations, it is essential to take the axial bearing capacity (Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document}) of the pile into consideration., where determination of this target requires extreme fields and experimental efforts along with its cost. The primary objective of this study was to investigate the possibility of using tree-based approaches in order to estimate the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. The goal of building Random Forests (RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}) models is to produce a strong and adaptable machine learning method that is capable of reliably and accurately completing tasks related to classification as well as regression. Enhanced precision in predicting feature significance, scalability, adaptability, and managing missing data are the main objectives of employing RF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF$$\end{document}. The accuracy of this model is very dependent on its hyperparameters, which are linked to the Coati optimizer (CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO$$\end{document}) and Giant trevally optimizer (GTO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GTO$$\end{document}) procedures (also called RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document}) in order to find the optimal combinations. In a database, there were 472 driven pile static load test results collected from previous papers. Specifically, the construction, validation, and testing phases of the proposed framework were carried out using the learning set (70%), validation set (15%), and evaluating set (15%) of the dataset. Moreover, the feature importance analysis is designed to assess the impact of each input variable on the axial Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} of piles. RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} and RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} offer promising Bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B}_{c}$$\end{document} forecasting capabilities, where the RF-C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-C$$\end{document} approach outperformed the RF-G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RF-G$$\end{document} method in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} values, with values of 0.9876, 0.9781, and 0.9873.
引用
收藏
页码:7813 / 7834
页数:21
相关论文
共 50 条
  • [1] Developing random forest hybridization models for estimating the axial bearing capacity of pile
    Tuan Anh Pham
    Van Quan Tran
    PLOS ONE, 2022, 17 (03):
  • [2] Assessment of design methods for axial bearing capacity of driven piles in clay
    Su Shi-ding
    Yang Zhong-xuan
    Guo Wang-bo
    ROCK AND SOIL MECHANICS, 2015, 36 : 389 - 393
  • [3] Comparative Study on Prediction of Axial Bearing Capacity of Driven Piles in Granular Materials
    Momeni, Ehsan
    Maizir, Harnedi
    Gofar, Nurly
    Nazir, Ramli
    JURNAL TEKNOLOGI, 2013, 61 (03):
  • [4] Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest
    Tuan Anh Pham
    Hai-Bang Ly
    Van Quan Tran
    Loi Van Giap
    Huong-Lan Thi Vu
    Hong-Anh Thi Duong
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [5] Bearing capacity of long driven piles using dynamic methods
    Zhang, L
    Chau, ACW
    Shek, MP
    Proceedings of the Twelfth Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Vol 1 and 2, 2003, : 685 - 688
  • [6] Bearing capacity degradation of driven steel piles under cyclic-axial loading
    Hu, Yifeng
    Hoch, Albert
    BAUTECHNIK, 2013, 90 (09) : 559 - 571
  • [7] Setup of axial bearing capacity of open ended tubular steel piles driven in sand
    Ahlinhan, Marx Ferdinand
    Adjovi, Edmond Codjo
    STUDIA GEOTECHNICA ET MECHANICA, 2020, 42 (01) : 74 - 82
  • [8] Axial capacity prediction for driven piles using ANN: Model comparison
    Lok, TMH
    Che, WF
    GEOTECHNICAL ENGINEERING FOR TRANSPORTATION PROJECTS, VOL 1, 2004, (126): : 697 - +
  • [9] Increased Bearing Capacity of Piles Driven In Clay
    Bakholdin, B. V.
    Bessmertny, A. V.
    Yastrebov, P. I.
    SOIL MECHANICS AND FOUNDATION ENGINEERING, 2017, 54 (02) : 97 - 101
  • [10] Time effects on the bearing capacity of driven piles
    Chen, CS
    Liew, SS
    Tan, YC
    SOIL MECHANICS AND GEOTECHNICAL ENGINEERING, VOL 1: ELEVENTH ASIAN REGIONAL CONFERENCE, 1999, : 175 - 178