Comparison of sparse Kernel Principal Component Analysis methods

被引:0
|
作者
Gou, Zhen Kun [1 ]
Feng, JunKang [1 ]
Fyfe, Colin [1 ]
机构
[1] Univ of Paisley, United Kingdom
关键词
Eigenvalues and eigenfunctions - Intelligent control - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a comparative study of a group of methods based on Kernels which attempt to identify only the most significant cases with which to create the nonlinear Feature space. Kernels were originally derived in the context of Support Vector Machines which identify the smallest number of data points necessary to solve a particular problem (e.g. regression or classification). We use extensions of Kernel Principal Component Analysis to identify the optimal cases to create a sparse representation in Feature Space. The efficiency of the kernel models are compared on an oceanographic problem.
引用
收藏
页码:309 / 312
相关论文
共 50 条
  • [21] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [22] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [23] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195
  • [24] Biobjective sparse principal component analysis
    Carrizosa, Emilio
    Guerrero, Vanesa
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 151 - 159
  • [25] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [26] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [27] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [28] Joint sparse principal component analysis
    Yi, Shuangyan
    Lai, Zhihui
    He, Zhenyu
    Cheung, Yiu-ming
    Liu, Yang
    PATTERN RECOGNITION, 2017, 61 : 524 - 536
  • [29] Integrative sparse principal component analysis
    Fang, Kuangnan
    Fan, Xinyan
    Zhang, Qingzhao
    Ma, Shuangge
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 1 - 16
  • [30] Automatic sparse principal component analysis
    Park, Heewon
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 678 - 697