Comparison of sparse Kernel Principal Component Analysis methods

被引:0
|
作者
Gou, Zhen Kun [1 ]
Feng, JunKang [1 ]
Fyfe, Colin [1 ]
机构
[1] Univ of Paisley, United Kingdom
关键词
Eigenvalues and eigenfunctions - Intelligent control - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a comparative study of a group of methods based on Kernels which attempt to identify only the most significant cases with which to create the nonlinear Feature space. Kernels were originally derived in the context of Support Vector Machines which identify the smallest number of data points necessary to solve a particular problem (e.g. regression or classification). We use extensions of Kernel Principal Component Analysis to identify the optimal cases to create a sparse representation in Feature Space. The efficiency of the kernel models are compared on an oceanographic problem.
引用
收藏
页码:309 / 312
相关论文
共 50 条
  • [31] Performance Comparison of Kernel Principal Component Analysis's Kernels in Intrusion Detection
    Al-Amro, Abrar
    Hussain, Muhammad
    Ahmad, Iftikhar
    Alghamdi, Abdullah
    Al-Wadud, Mohammad Abdullah
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (03) : 733 - 738
  • [32] Cross-validation methods in principal component analysis: A comparison
    Diana G.
    Tommasi C.
    Statistical Methods and Applications, 2002, 11 (1) : 71 - 82
  • [33] A note on robust kernel principal component analysis
    Deng, Xinwei
    Yuan, Ming
    Sudjianto, Agus
    PREDICTION AND DISCOVERY, 2007, 443 : 21 - +
  • [34] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [35] Fast iterative kernel principal component analysis
    Guenter, Simon
    Schraudolph, Nicol N.
    Vishwanathan, S. V. N.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1893 - 1918
  • [36] Statistical properties of kernel principal component analysis
    Zwald, L
    Bousquet, O
    Blanchard, G
    LEARNING THEORY, PROCEEDINGS, 2004, 3120 : 594 - 608
  • [37] Statistical properties of kernel principal component analysis
    Blanchard, Gilles
    Bousquet, Olivier
    Zwald, Laurent
    MACHINE LEARNING, 2007, 66 (2-3) : 259 - 294
  • [38] KERNEL PRINCIPAL COMPONENT ANALYSIS OF THE EAR MORPHOLOGY
    Zolfaghari, Reza
    Epain, Nicolas
    Jin, Craig T.
    Glaunes, Joan
    Tew, Anthony
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 481 - 485
  • [39] Statistical properties of kernel principal component analysis
    Gilles Blanchard
    Olivier Bousquet
    Laurent Zwald
    Machine Learning, 2007, 66 : 259 - 294
  • [40] An Improved Algorithm for Kernel Principal Component Analysis
    Wenming Zheng
    Cairong Zou
    Li Zhao
    Neural Processing Letters, 2005, 22 : 49 - 56