Joint sparse principal component analysis

被引:166
|
作者
Yi, Shuangyan [1 ]
Lai, Zhihui [2 ]
He, Zhenyu [1 ]
Cheung, Yiu-ming [3 ,4 ]
Liu, Yang [3 ,4 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci, Harbin, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Inst Res & Continuing Educ, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dimensionality reduction; Joint sparse; l(2,1)-norm; FACE RECOGNITION; FRAMEWORK; DICTIONARY;
D O I
10.1016/j.patcog.2016.08.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is widely used in dimensionality reduction. A lot of variants of PCA have been proposed to improve the robustness of the algorithm. However, the existing methods either cannot select the useful features consistently or is still sensitive to outliers, which will depress their performance of classification accuracy. In this paper, a novel approach called joint sparse principal component analysis (JSPCA) is proposed to jointly select useful features and enhance robustness to outliers. In detail, JSPCA relaxes the orthogonal constraint of transformation matrix to make it have more freedom to jointly select useful features for low-dimensional representation. JSPCA imposes joint sparse constraints on its objective function, i.e., l(2,1)-norm is imposed on both the loss term and the regularization term, to improve the algorithmic robustness. A simple yet effective optimization solution is presented and the theoretical analyses of JSPCA are provided. The experimental results on eight data sets demonstrate that the proposed approach is feasible and effective. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:524 / 536
页数:13
相关论文
共 50 条
  • [1] Joint Sparse Principal Component Analysis Based Roust Sparse Fault Detection
    Jiang, Wenlan
    Zhang, Tao
    Wang, Huangang
    [J]. PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 1234 - 1239
  • [2] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [3] Structured Joint Sparse Principal Component Analysis for Fault Detection and Isolation
    Liu, Yi
    Zeng, Jiusun
    Xie, Lei
    Luo, Shihua
    Su, Hongye
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) : 2721 - 2731
  • [4] Structured Joint Sparse Principal Component Analysis for Fault Detection and Isolation
    Liu, Yi
    Zeng, Jiusun
    Xie, Lei
    Luo, Shihua
    Su, Hongye
    [J]. PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 777 - 782
  • [5] Joint sparse principal component regression with robust property
    Qi, Kai
    Tu, Jingwen
    Yang, Hu
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [6] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [7] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [8] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [9] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [10] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503