Stability of a vortex in a small trapped Bose-Einstein condensate

被引:0
|
作者
Linn, Marion
Fetter, Alexander L.
机构
[1] Department of Physics, Stanford University, Stanford, CA 94305-4060, United States
[2] Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Ωc for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency ωa of the anomalous mode. Although Ωc=-ωa through first order, the second-order contributions ensure that the absolute value |ωa| is always smaller than the critical angular velocity Ωc. With increasing external rotation Ω, the dynamical instability of the condensate with a vortex disappears at Ω*=|ωa|, whereas the vortex state becomes energetically stable at the larger value Ωc. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Ωm. A variational calculation yields Ωm=|ωa| to first order (hence Ωm also coincides with the critical angular velocity Ωc to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.
引用
收藏
页码:4910 / 4917
相关论文
共 50 条
  • [41] Quantum turbulence in a trapped Bose-Einstein condensate
    Kobayashi, Michikazu
    Tsubota, Makoto
    PHYSICAL REVIEW A, 2007, 76 (04)
  • [42] Quantum state of a trapped Bose-Einstein condensate
    Dunningham, JA
    Collett, MJ
    Walls, DF
    PHYSICS LETTERS A, 1998, 245 (1-2) : 49 - 54
  • [43] Overcritical rotation of a trapped Bose-Einstein condensate
    Recati, A
    Zambelli, F
    Stringari, S
    PHYSICAL REVIEW LETTERS, 2001, 86 (03) : 377 - 380
  • [44] Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate
    Horng, T. -L.
    Gou, S. -C.
    Lin, T. -C.
    PHYSICAL REVIEW A, 2006, 74 (04):
  • [45] Vortex Stability in a Trapped Bose Condensate
    Alexander L. Fetter
    Journal of Low Temperature Physics, 1998, 113 : 189 - 194
  • [46] Vortex stability in a trapped Bose condensate
    Fetter, AL
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1998, 113 (3-4) : 189 - 194
  • [47] Vortex precession and exchange in a Bose-Einstein condensate
    Julien Garaud
    Jin Dai
    Antti J. Niemi
    Journal of High Energy Physics, 2021
  • [48] The structure of a quantized vortex in a Bose-Einstein condensate
    Tang, JM
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 287 - 292
  • [49] The Structure of a Quantized Vortex in a Bose-Einstein Condensate
    Jian-Ming Tang
    Journal of Low Temperature Physics, 2000, 121 : 287 - 292
  • [50] Vortex dynamics in an annular Bose-Einstein condensate
    Woo, S. J.
    Son, Young-Woo
    PHYSICAL REVIEW A, 2012, 86 (01):