Stability of a vortex in a small trapped Bose-Einstein condensate

被引:0
|
作者
Linn, Marion
Fetter, Alexander L.
机构
[1] Department of Physics, Stanford University, Stanford, CA 94305-4060, United States
[2] Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Ωc for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency ωa of the anomalous mode. Although Ωc=-ωa through first order, the second-order contributions ensure that the absolute value |ωa| is always smaller than the critical angular velocity Ωc. With increasing external rotation Ω, the dynamical instability of the condensate with a vortex disappears at Ω*=|ωa|, whereas the vortex state becomes energetically stable at the larger value Ωc. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Ωm. A variational calculation yields Ωm=|ωa| to first order (hence Ωm also coincides with the critical angular velocity Ωc to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.
引用
收藏
页码:4910 / 4917
相关论文
共 50 条
  • [21] Stable controllable giant vortex in a trapped Bose-Einstein condensate
    Adhikari, S. K.
    LASER PHYSICS LETTERS, 2019, 16 (08)
  • [22] Vortex stability near the surface of a Bose-Einstein condensate
    Al Khawaja, U
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [23] Vortex stability near the surface of a Bose-Einstein condensate
    Al Khawaja, U.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (06): : 1 - 063614
  • [24] Stability of regular vortex polygons in Bose-Einstein condensate
    Kilin, A. A.
    Artemova, E. M.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2020, 56 : 20 - 29
  • [25] Stability and excitations of a dipolar Bose-Einstein condensate with a vortex
    Wilson, Ryan M.
    Ronen, Shai
    Bohn, John L.
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [26] Turbulence in a trapped Bose-Einstein condensate
    Seman, J. A.
    Shiozaki, R. F.
    Poveda-Cuevas, F. J.
    Henn, E. A. L.
    Magalhaes, K. M. F.
    Roati, G.
    Telles, G. D.
    Bagnato, V. S.
    22ND INTERNATIONAL CONFERENCE ON ATOMIC PHYSICS, 2011, 264
  • [27] Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions
    O'Dell, D. H. J.
    Eberlein, C.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [28] Output coupling from a trapped Bose-Einstein condensate in a vortex state
    Blakie, PB
    Ballagh, RJ
    Clark, CW
    PHYSICAL REVIEW A, 2003, 68 (02):
  • [29] Vortex dipole in a trapped two-dimensional Bose-Einstein condensate
    Li, Weibin
    Haque, Masudul
    Komineas, Stavros
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [30] Stability analysis of a Bose-Einstein condensate trapped in a generic potential
    Castellanos, Elias
    Escamilla-Rivera, Celia
    Reyes-Ibarra, Mayra J.
    EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (09):