Stability of a vortex in a small trapped Bose-Einstein condensate

被引:0
|
作者
Linn, Marion
Fetter, Alexander L.
机构
[1] Department of Physics, Stanford University, Stanford, CA 94305-4060, United States
[2] Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Ωc for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency ωa of the anomalous mode. Although Ωc=-ωa through first order, the second-order contributions ensure that the absolute value |ωa| is always smaller than the critical angular velocity Ωc. With increasing external rotation Ω, the dynamical instability of the condensate with a vortex disappears at Ω*=|ωa|, whereas the vortex state becomes energetically stable at the larger value Ωc. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Ωm. A variational calculation yields Ωm=|ωa| to first order (hence Ωm also coincides with the critical angular velocity Ωc to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.
引用
收藏
页码:4910 / 4917
相关论文
共 50 条
  • [31] Vortex knots in a Bose-Einstein condensate
    Proment, Davide
    Onorato, Miguel
    Barenghi, Carlo F.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [32] Nonlinear stability of regular vortex polygons in a Bose-Einstein condensate
    Artemova, Elizaveta
    Kilin, Alexander
    PHYSICS OF FLUIDS, 2021, 33 (12)
  • [33] Vortex stabilization in a small rotating asymmetric Bose-Einstein condensate
    Linn, M
    Niemeyer, M
    Fetter, AL
    PHYSICAL REVIEW A, 2001, 64 (02): : 1 - 11
  • [34] Anomalous effects in a trapped Bose-Einstein condensate
    Benarous, Mohamed
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (11):
  • [35] Vortices in a trapped dilute Bose-Einstein condensate
    Fetter, AL
    Svidzinsky, AA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (12) : R135 - R194
  • [36] Route to turbulence in a trapped Bose-Einstein condensate
    Seman, J. A.
    Henn, E. A. L.
    Shiozaki, R. F.
    Roati, G.
    Poveda-Cuevas, F. J.
    Magalhaes, K. M. F.
    Yukalov, V. I.
    Tsubota, M.
    Kobayashi, M.
    Kasamatsu, K.
    Bagnato, V. S.
    LASER PHYSICS LETTERS, 2011, 8 (09) : 691 - 696
  • [37] Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate
    Rooney, S. J.
    Allen, A. J.
    Zulicke, U.
    Proukakis, N. P.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [38] Vortex creation in a trapped Bose-Einstein condensate by stimulated Raman adiabatic passage
    Nandi, G
    Walser, R
    Schleich, WP
    PHYSICAL REVIEW A, 2004, 69 (06): : 063606 - 1
  • [39] Stochastic dynamics of a trapped Bose-Einstein condensate
    Duine, RA
    Stoof, HTC
    PHYSICAL REVIEW A, 2002, 65 (01): : 25
  • [40] Anomalous effects in a trapped Bose-Einstein condensate
    Mohamed Benarous
    The European Physical Journal D, 2013, 67