Critical point theory and global Lorentzian geometry

被引:0
|
作者
Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy [1 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:605 / 616
相关论文
共 50 条
  • [21] LORENTZIAN GEOMETRY OF CR SUBMANIFOLDS
    DUGGAL, KL
    ACTA APPLICANDAE MATHEMATICAE, 1989, 17 (02) : 171 - 193
  • [22] Fundamental domains in Lorentzian geometry
    Anna Pratoussevitch
    Geometriae Dedicata, 2007, 126 : 155 - 175
  • [23] A new geometry of a Lorentzian manifold
    Papuc, DI
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (1-2): : 145 - 158
  • [24] Fundamental domains in Lorentzian geometry
    Pratoussevitch, Anna
    GEOMETRIAE DEDICATA, 2007, 126 (01) : 155 - 175
  • [25] On a problem of Osserman in Lorentzian geometry
    GarciaRio, E
    Kupeli, DN
    VazquezAbal, ME
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (01) : 85 - 100
  • [26] Lorentzian geometry of the Heisenberg group
    Rahmani, N.
    Rahmani, S.
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 133 - 140
  • [27] Hyperbolic PDE and Lorentzian geometry
    Christodoulou, Demetrios
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 259 - 282
  • [28] Lorentzian Geometry on the Lobachevsky Plane
    Yu. L. Sachkov
    Mathematical Notes, 2023, 114 : 127 - 130
  • [29] Recent trends in Lorentzian geometry
    Sánchez, Miguel
    Ortega, Miguel
    Romero, Alfonso
    Springer Proceedings in Mathematics and Statistics, 2013, 26
  • [30] A review of critical point theory
    Chang, KC
    CHALLENGES FOR THE 21ST CENTURY, 2000, : 3 - 50