Weight distribution for closest coset decoding of |u|u+v| constructed codes

被引:0
|
作者
Univ of Hawaii, Honolulu, United States [1 ]
机构
来源
IEEE Trans Inf Theory | / 3卷 / 1028-1030期
关键词
Number:; NCR-91-15400; NCR-94-15374; Acronym:; NSF; Sponsor: National Science Foundation; -;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Linear characteristic of weight distribution of elements in the coset of one order R-M codes
    Li, Zichen
    Zhang, Juanmei
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 18 (08): : 77 - 81
  • [43] CYCLIC DNA CODES OVER F2[u, v]/⟨u3, v2 - v, vu - uv⟩
    Shi, Minjia
    Lu, Yaqi
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (01) : 157 - 164
  • [44] NEW NON-BINARY QUANTUM CODES FROM CONSTACYCLIC CODES OVER Fq[u,v]/⟨u2-1, v2 - v, uu - vu)
    Ma, Fanghui
    Gao, Jian
    Fu, Fang-Wei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (03) : 421 - 434
  • [45] Quantum codes from skew constacyclic codes over the ring Fq[u, v]/⟨u2-1, v2-1, uv - vu⟩
    Bag, Tushar
    Dinh, Hai Q.
    Upadhyay, Ashish K.
    Bandi, Ramakrishna
    Yamaka, Woraphon
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [46] ON QUANTUM CODES CONSTRUCTION FROMCONSTACYCLIC CODES OVER THE RING Iq[u,v]/⟨u2-α2,v2-α2,uv-vu⟩
    Ali, Shakir
    Sharma, Pushpendra
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2024, 30 (02) : 139 - 159
  • [47] Generators of negacyclic codes over Fp[u, v]/⟨u2, v2, uv, vu⟩ of length ps
    Choi, Hyun Seung
    Kim, Boran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [48] On Z2Z2[u]Z2[u, v]-additive cyclic codes and their application in obtaining optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Khan, Naim
    FILOMAT, 2024, 38 (08) : 2899 - 2914
  • [49] Polyadic constacyclic codes over a non-chain ring Fq[u, v]/⟨f (u), g(v), uv - vu⟩
    Goyal, Mokshi
    Raka, Madhu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 425 - 447
  • [50] Constacyclic codes over the non-chain finite commutative ring Z4[u,v]/⟨u2 - u, v2, uv⟩
    Gowdhaman, Karthick
    Gulliver, T. Aaron
    Mohan, Cruz
    Chinnapillai, Durairajan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (06): : 1867 - 1885