共 50 条
- [2] Constacyclic codes over the non-chain finite commutative ring Z4[u,v]/⟨u2 - u, v2, uv⟩ JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (06): : 1867 - 1885
- [4] Constacyclic codes over the ring Fp[u, v]/⟨u2-1, v3 - v, uv - vu⟩ and their applications EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (12):
- [6] Polyadic constacyclic codes over a non-chain ring Fq[u,v]/⟨f(u),g(v),uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle $$\end{document} Journal of Applied Mathematics and Computing, 2020, 62 : 425 - 447
- [10] Skew constacyclic codes over a non-chain ring Fq[u,v]/⟨f(u),g(v),uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle $$\end{document} Applicable Algebra in Engineering, Communication and Computing, 2020, 31 (3-4) : 173 - 194