On constacyclic codes of length ps over Fpm[u, v]/⟨u2, v2, uv - vu⟩

被引:6
|
作者
Dinh, Hai Q. [1 ,2 ]
Kewat, Pramod Kumar [3 ]
Kushwaha, Sarika [3 ]
Yamaka, Woraphon [4 ]
机构
[1] TonDuc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Indian Sch Mines, Indian Inst Technol, Dept Math & Comp, Dhanbad 826004, Bihar, India
[4] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
关键词
Constacyclic codes; Codes over rings; Cyclic codes; Dual codes; Repeated root codes; CYCLIC CODES; NEGACYCLIC CODES; 2P(S); RINGS;
D O I
10.1016/j.disc.2020.111890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number, in this paper, we investigate the structures of all constacyclic codes of length p(s) over the ring R-u2,R-v2,R-pm = F-pm[u, v]/< u(2), v(2), uv - vu). The units of the ring R-u2,R-v2,R-pm can be divided into following five forms: alpha, lambda(1) = alpha + delta(1)uv, lambda(2) =alpha + gamma v +delta uv, lambda(3)= alpha + beta u+delta uv, lambda(4) = alpha+beta u+gamma v+delta uv, where alpha, beta, gamma, delta(1) is an element of F-pm* and delta is an element of F-pm. We obtain the algebraic structures of all constacyclic codes of length p(s) over R-u2 ,R-v2,R- pm except (alpha + delta(1)uv)-constacyclic codes, in terms of their polynomial generators and also find the number of codewords in each of these constacyclic codes. The number of constacyclic codes and duals of constacyclic codes corresponding to the units lambda(2), lambda(3) and lambda(4) are determined. We also provide examples to illustrate our results, which include several optimal codes. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over R=Fpm[u,v]⟨u2,v2,uv-vu⟩
    Acharya, Divya
    Poojary, Prasanna
    Bhatta, Vadiraja G. R.
    SYMMETRY-BASEL, 2025, 17 (03):
  • [2] Generators of negacyclic codes over Fp[u, v]/⟨u2, v2, uv, vu⟩ of length ps
    Choi, Hyun Seung
    Kim, Boran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [3] (θ, δθ)-Cyclic codes over Fq[u, v]/⟨u2 - u, v2 - v, uv - vu⟩
    Patel, Shikha
    Prakash, Om
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2763 - 2781
  • [4] A Class of Constacyclic Codes over the Ring Z4[u, v] /⟨u2, v2, uv - vu⟩ and Their Gray Images
    Islam, Habibul
    Prakash, Om
    FILOMAT, 2019, 33 (08) : 2237 - 2248
  • [5] Cyclic codes over the ring Zp[u, v]/[u2, v2, uv-vu]
    Kewat, Pramod Kumar
    Ghosh, Bappaditya
    Pattanayak, Sukhamoy
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 161 - 175
  • [6] Self-dual constacyclic codes of length 2s over the ring F2m[u, v]/⟨u2, v2, uv - vu⟩
    Dinh, Hai Q.
    Kewat, Pramod Kumar
    Kushwaha, Sarika
    Yamaka, Woraphon
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 431 - 459
  • [7] Hamming Distances of Constacyclic Codes of Length 6ps over Fpm[u]/⟨u2⟩
    Phuto, Jirayu
    Klin-eam, Chakkrid
    THAI JOURNAL OF MATHEMATICS, 2022, : 1 - 14
  • [8] On a class of constacyclic codes and MDS code construction over Fpm[u,v]/⟨u2-δu,v2-γv,uv-vu⟩
    Mishra, Vipul
    Shukla, Awadhesh Kumar
    Pathak, Sachin
    Pandey, Om Prakash
    Upadhyay, Ashish Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025, 18 (02)
  • [9] A class of constacyclic codes over Fpm [u]/⟨u2⟩
    Rani, Saroj
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 355 - 371
  • [10] MACWILLIAMS IDENTITIES OF THE LINEAR CODES OVER Z4[u,v]/⟨u2,v2,uv,vu⟩
    Caliskan, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 291 - 297