A class of constacyclic codes over Fpm [u]/⟨u2⟩

被引:0
|
作者
Rani, Saroj [1 ]
机构
[1] SA Jain PG Coll, Dept Math, Ambala City 134003, India
来源
关键词
Negacyclic codes; Cyclic codes; Semi-local rings; NEGACYCLIC CODES; LENGTH 2P(S);
D O I
10.1007/s13226-021-00001-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime, and let m be a positive integer satisfying p(m) = 3(mod 4). Let F-pm be the finite field with pm elements, and let R = F-pm [u]/< u(2)> be the finite commutative chain ring with unity. In this paper, we determine all constacyclic codes of length 4p(s) over R and their dual codes, where s is a positive integer. We also determine their sizes and list some isodual constacyclic codes of length 4p(s) over R.
引用
收藏
页码:355 / 371
页数:17
相关论文
共 50 条
  • [1] (1+λu2)-constacyclic codes of arbitrary length over Fpm[u]/u3
    Ding, Jian
    Li, Hong-ju
    Liang, Jing
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 59 (1-2) : 343 - 359
  • [3] Hamming Distances of Constacyclic Codes of Length 6ps over Fpm[u]/⟨u2⟩
    Phuto, Jirayu
    Klin-eam, Chakkrid
    [J]. THAI JOURNAL OF MATHEMATICS, 2022, : 1 - 14
  • [4] On a Class of (δ plus αu2)-Constacyclic Codes over Fq[u] =/⟨u4⟩
    Cao, Yuan
    Cao, Yonglin
    Gao, Jian
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (07) : 1438 - 1445
  • [5] On constacyclic codes of length ps over Fpm[u, v]/⟨u2, v2, uv - vu⟩
    Dinh, Hai Q.
    Kewat, Pramod Kumar
    Kushwaha, Sarika
    Yamaka, Woraphon
    [J]. DISCRETE MATHEMATICS, 2020, 343 (08)
  • [6] ON A CLASS OF CONSTACYCLIC CODES OF LENGTH 2ps OVER Fpm[u]/<ua>
    Dinh, Hai Q.
    Bac Trong Nguyen
    Sriboonchitta, Songsak
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (04) : 1189 - 1208
  • [7] Constacyclic codes over Fpm[u1, u2,..,uk]/<ui2 = ui, uiuj = ujui>
    Zheng, Xiying
    Kong, Bo
    [J]. OPEN MATHEMATICS, 2018, 16 : 490 - 497
  • [8] A class of repeated-root constacyclic codes over Fpm[u]/⟨ue⟩ of Type 2
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Fu, Fang-Wei
    Gao, Jian
    Sriboonchitta, Songsak
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 238 - 267
  • [9] On some constacyclic codes over the ring Fpm [u]/⟨u4⟩
    Mahmoodi, H. R.
    Sobhani, R.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (11) : 3106 - 3122
  • [10] Torsion codes of a α-constacyclic code over Fpm[u]/⟨u3⟩
    Hesari, Roghaye Mohammadi
    Samei, Karim
    [J]. DISCRETE MATHEMATICS, 2024, 347 (06)