Quantum codes from skew constacyclic codes over the ring Fq[u, v]/⟨u2-1, v2-1, uv - vu⟩

被引:31
|
作者
Bag, Tushar [1 ]
Dinh, Hai Q. [2 ,3 ]
Upadhyay, Ashish K. [1 ]
Bandi, Ramakrishna [4 ]
Yamaka, Woraphon [5 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801103, Bihar, India
[2] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[4] Int Inst Informat Technol Naya Raipur, Dept Math, Atal Nagar 493661, India
[5] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
关键词
Skew constacyclic codes; Dual codes; Quantum error-correcting codes; CYCLIC CODES; CONSTRUCTION;
D O I
10.1016/j.disc.2019.111737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study uantum error-correcting codes from skew constacyclic codes over the ring R = F-q[u, v]/< u(2) - 1, v(2) - 1, uv - vu >, where q = p(m) for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over F-q. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over F-q. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Constacyclic codes over the ring Fp[u, v]/⟨u2-1, v3 - v, uv - vu⟩ and their applications
    Ashraf, Mohammad
    Ali, Shakir
    Mohammad, Ghulam
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (12):
  • [2] NEW NON-BINARY QUANTUM CODES FROM CONSTACYCLIC CODES OVER Fq[u,v]/⟨u2-1, v2 - v, uu - vu)
    Ma, Fanghui
    Gao, Jian
    Fu, Fang-Wei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (03) : 421 - 434
  • [3] Quantum codes over Fp from cyclic codes over Fp[u, v]/⟨u2-1, v3 - v, uv - vu⟩
    Ashraf, Mohammad
    Mohammad, Ghulam
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02): : 325 - 335
  • [4] Quantum codes from the cyclic codes over Fp[u, v, w]/⟨u2-1, v2-1, w2-1, uv - vu, vw - wv, wu - uw⟩
    Islam, Habibul
    Prakash, Om
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 625 - 635
  • [5] Skew constacyclic codes over a non -chain ring Fq v]./(f (u), g(v), uv vu)
    Bhardwaj, Swati
    Raka, Madhu
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2020, 31 (3-4) : 173 - 194
  • [6] DNA cyclic codes over the ring F2[u, v]/⟨u2-1, v3 - v, uv - vu⟩
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Pattanayak, Sukhamoy
    Sriboonchitta, Songsak
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (03)
  • [7] Quantum codes from (1-2u1-2u2 - ...-2um)-skew constacyclic codes over the ring Fq + u1Fq + ... + u2mFq
    Bag, Tushar
    Ashraf, Mohammad
    Mohammad, Ghulam
    Upadhyay, Ashish K.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (09)
  • [8] Polyadic constacyclic codes over a non-chain ring Fq[u, v]/⟨f (u), g(v), uv - vu⟩
    Goyal, Mokshi
    Raka, Madhu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 425 - 447
  • [9] (θ, δθ)-Cyclic codes over Fq[u, v]/⟨u2 - u, v2 - v, uv - vu⟩
    Patel, Shikha
    Prakash, Om
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2763 - 2781
  • [10] Construction of quantum codes from λ-constacyclic codes over the ring Fp[u,v]/⟨v3-v,u3-u,uv-vu⟩
    Gowdhaman, Karthick
    Mohan, Cruz
    Chinnapillai, Durairajan
    Gao, Jian
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) : 611 - 622