Finite propagation for a pseudoparabolic equation: Two-phase non-equilibrium flows in porous media

被引:0
|
作者
Garcia-Azorero, Jesus [1 ]
de Pablo, Arturo [1 ]
机构
[1] Universidad Autonoma de Madrid, Madrid, Spain
关键词
Boundary conditions - Equations of motion - Filtration - Functions - Initial value problems - Mathematical models - Porous materials - Problem solving - Theorem proving - Two phase flow;
D O I
暂无
中图分类号
学科分类号
摘要
The process where oil can be displaced by the water via capillary imbibition is studied. The model, q≡q1+q2 = 0, is considered. The classical porous medium equation (PME) is obtained in this process, represented by the equation &parttv-Δφ(v) = 0 (1), where φ(s) = -1/ρ∫0s f1(ξ)f2(ξ)/f1(ξ)+f2(ξ) J′(ξ)dξ.
引用
收藏
页码:551 / 573
相关论文
共 50 条
  • [41] Anisotropy effects in two-phase flows through porous media
    M. N. Dmitriev
    N. M. Dmitriev
    V. M. Maksimov
    D. Yu. Semiglasov
    Fluid Dynamics, 2010, 45 : 468 - 473
  • [42] Phenomenological meniscus model for two-phase flows in porous media
    Panfilov, M
    Panfilova, I
    TRANSPORT IN POROUS MEDIA, 2005, 58 (1-2) : 87 - 119
  • [43] NON-EQUILIBRIUM RELATIVISTIC TWO-PHASE FLOW WITH HEAT EXCHANGE
    Giambo, Sebastiano
    Muscianisi, Giuseppa
    QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (04) : 773 - 786
  • [44] Homogeneous non-equilibrium two-phase choked flow modeling
    Venetsanos, Alexandros G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (50) : 22715 - 22726
  • [45] Macroscale equilibrium conditions for two-phase flow in porous media
    Gray, WG
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2000, 26 (03) : 467 - 501
  • [46] A homogeneous non-equilibrium two-phase critical flow model
    Travis, J. R.
    Koch, D. Piccioni
    Breitung, W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (22) : 17373 - 17379
  • [47] A two-phase numerical model for non-equilibrium sediment transport
    Chen, Xin
    Yu, Xiping
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (01): : 65 - 70
  • [48] Acoustic wave propagation in two-phase heterogeneous porous media
    Osypik, J. I.
    Pushkina, N. I.
    Zhileikin, Ya M.
    PHYSICS OF WAVE PHENOMENA, 2013, 21 (03) : 238 - 244
  • [49] Propagation and evolution of wave fronts in two-phase porous media
    Liu, ZF
    de Boer, R
    TRANSPORT IN POROUS MEDIA, 1999, 34 (1-3) : 209 - 225
  • [50] Propagation and Evolution of Wave Fronts in Two-Phase Porous Media
    Zhanfang Liu
    Transport in Porous Media, 1999, 34 : 209 - 225