Finite propagation for a pseudoparabolic equation: Two-phase non-equilibrium flows in porous media

被引:0
|
作者
Garcia-Azorero, Jesus [1 ]
de Pablo, Arturo [1 ]
机构
[1] Universidad Autonoma de Madrid, Madrid, Spain
关键词
Boundary conditions - Equations of motion - Filtration - Functions - Initial value problems - Mathematical models - Porous materials - Problem solving - Theorem proving - Two phase flow;
D O I
暂无
中图分类号
学科分类号
摘要
The process where oil can be displaced by the water via capillary imbibition is studied. The model, q≡q1+q2 = 0, is considered. The classical porous medium equation (PME) is obtained in this process, represented by the equation &parttv-Δφ(v) = 0 (1), where φ(s) = -1/ρ∫0s f1(ξ)f2(ξ)/f1(ξ)+f2(ξ) J′(ξ)dξ.
引用
收藏
页码:551 / 573
相关论文
共 50 条
  • [31] Averaged model with capillary non-equilibrium for two-phase in strongly non-uniform porous medium
    Panfilov, M.B.
    Panfilova, I.V.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 1600, (03): : 93 - 104
  • [32] An Investigation of Uncertainty Propagation in Non-equilibrium Flows
    Xiao, Tianbai
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2022, 36 (04) : 294 - 318
  • [33] A node-centred finite volume formulation for the solution of two-phase flows in non-homogeneous porous media
    de Carvalho, D. K. E.
    Willmersdorf, R. B.
    Lyra, P. R. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (08) : 1197 - 1219
  • [34] Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media-Theoretical considerations and modeling
    Niessner, Jennifer
    Hassanizadeh, S. Majid
    ADVANCES IN WATER RESOURCES, 2009, 32 (12) : 1756 - 1766
  • [35] A study of non-equilibrium wave groups in two-phase flow in high-contrast porous media with relative permeability hysteresis
    Abreu, Eduardo
    Ferraz, Paola
    Lambert, Wanderson
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
  • [36] Phenomenological Meniscus Model for Two-Phase Flows in Porous Media
    M. Panfilov
    I. Panfilova
    Transport in Porous Media, 2005, 58 : 87 - 119
  • [37] Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows
    Carmouze, Quentin
    Saurel, Richard
    Chiapolino, Alexandre
    Lapebie, Emmanuel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 408
  • [38] Energy Stable Discretization for Two-Phase Porous Media Flows
    Cances, Clement
    Nabet, Flore
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 213 - 221
  • [39] Anisotropy effects in two-phase flows through porous media
    Dmitriev, M. N.
    Dmitriev, N. M.
    Maksimov, V. M.
    Semiglasov, D. Yu.
    FLUID DYNAMICS, 2010, 45 (03) : 468 - 473
  • [40] Immiscible two-phase fluid flows in deformable porous media
    Lo, WC
    Sposito, G
    Majer, E
    ADVANCES IN WATER RESOURCES, 2002, 25 (8-12) : 1105 - 1117