Finite propagation for a pseudoparabolic equation: Two-phase non-equilibrium flows in porous media

被引:0
|
作者
Garcia-Azorero, Jesus [1 ]
de Pablo, Arturo [1 ]
机构
[1] Universidad Autonoma de Madrid, Madrid, Spain
关键词
Boundary conditions - Equations of motion - Filtration - Functions - Initial value problems - Mathematical models - Porous materials - Problem solving - Theorem proving - Two phase flow;
D O I
暂无
中图分类号
学科分类号
摘要
The process where oil can be displaced by the water via capillary imbibition is studied. The model, q≡q1+q2 = 0, is considered. The classical porous medium equation (PME) is obtained in this process, represented by the equation &parttv-Δφ(v) = 0 (1), where φ(s) = -1/ρ∫0s f1(ξ)f2(ξ)/f1(ξ)+f2(ξ) J′(ξ)dξ.
引用
收藏
页码:551 / 573
相关论文
共 50 条
  • [21] Visualization of Non-Equilibrium Two-Phase Flow
    Rasti, Mehdi
    Jeong, Ji H.
    6TH IIR CONFERENCE ON THERMOPHYSICAL PROPERTIES AND TRANSFER PROCESSES OF REFRIGERANTS (TPTPR2021), 2021, : 119 - 126
  • [22] Upscaling of an immiscible non-equilibrium two-phase flow in double porosity media
    Konyukhov, Andrey
    Pankratov, Leonid
    APPLICABLE ANALYSIS, 2016, 95 (10) : 2300 - 2322
  • [23] Holder continuity for two-phase flows in porous media
    Yeh, Li-Ming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (11) : 1261 - 1289
  • [24] MODELING NON-EQUILIBRIUM TWO-PHASE FLOW IN ELASTIC-PLASTIC POROUS SOLIDS
    Menshov, Igor
    Serezhkin, Alexey
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 5989 - 6000
  • [25] Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model
    Marc O. Delchini
    Jean C. Ragusa
    Ray A. Berry
    Journal of Scientific Computing, 2016, 69 : 764 - 804
  • [26] Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model
    Delchini, Marc O.
    Ragusa, Jean C.
    Berry, Ray A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (02) : 764 - 804
  • [27] Analysis of variable porosity, thermal dispersion, and local thermal non-equilibrium on two-phase flow inside porous media
    Alomar, Omar Rafae
    APPLIED THERMAL ENGINEERING, 2019, 154 : 263 - 283
  • [28] Unsteady states in non-equilibrium two-phase seepage
    Bulgakova, GT
    Kalyakin, AN
    Khasanov, MM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2000, 64 (02): : 283 - 288
  • [29] Homogenization of Kondaurov's non-equilibrium two-phase flow in double porosity media
    Voloshin, Anton
    Pankratov, Leonid
    Konyukhov, Andrey
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1429 - 1450
  • [30] A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows
    Furfaro, Damien
    Saurel, Richard
    COMPUTERS & FLUIDS, 2015, 111 : 159 - 178